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Abstract

This paper discusses an object-oriented neural network model that was developed for predicting short-term traffic
conditions on a section of the Pacific Highway between Brisbane and the Gold Coast in Queensland, Australia. The
feasibility of this approach is demonstrated through a time-lag recurrent network (TLRN) which was developed for
predicting speed data up to 15 minutes into the future. The results obtained indicate that the TLRN is capable of
predicting speed up to 5 minutes into the future with a high degree of accuracy (90-94%). Similar models, which were
developed for predicting freeway travel times on the same facility, were successful in predicting travel times up to 15
minutes into the future with a similar degree of accuracy (93-95%). These results represent substantial improvements on
conventional model performance and clearly demonstrate the feasibility of using the object-oriented approach for
short-term traffic prediction. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The prediction of short-term traffic conditions
is a vital component of advanced traffic manage-
ment and information systems which aim to in-
fluence travel behaviour, reduce traffic congestion,
improve mobility and enhance air quality. Traffic
prediction models can be used to provide metro-
politan traffic control centres with an automated
tool for anticipating the congestion that may arise
on road facilities and its expected duration. This
information can then be provided to drivers in
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real-time to give them realistic estimates of travel
times, expected delays and alternative routes to
their destinations. Providing drivers with this in-
formation is believed to have the potential to al-
leviate traffic congestion and enhance the
performance of the road network.

Traffic information provided to drivers may
conceptually fall into one of three categories: his-
torical, current and predictive. Historical informa-
tion describes the state of the transportation
system during previous time periods. Current in-
formation is the most up-to-date information
about traffic conditions. A number of currently
available intelligent transport systems (ITS) tech-
nologies allow for the provision of this information
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in real-time at intervals less than 20 seconds on a
24-hour basis. Predictive information, on the other
hand, falls into two distinct categories: strategic
and short-term. Strategic information is mainly
needed for major decisions on road planning and
includes prediction of traffic flows and conditions
months or years into the future. In contrast, short-
term predictive information often has a horizon of
only a few minutes and is therefore more suited to
implementation in traffic management and infor-
mation systems.

Most of today’s traffic control systems rely
mainly on historical and current traffic data as a
basis for traffic management actions. The perfor-
mance of these systems is constrained because they
lack the predictive capabilities. Ideally, traffic con-
ditions should be anticipated and actions should be
planned accordingly. Since drivers’ decisions are
affected by expected network conditions, it is also
clear that the most useful type of information for a
driver faced with travel choices is reliable predictive
information. Drivers making travel decisions in the
absence of predictive information are implicitly
projecting future conditions from the historical and
current information available to them. Therefore,
predictions of what traffic conditions are likely to
be in a few minutes’ time (e.g., 5-10 minutes into the
future) are needed for effective traffic management
and information systems.

This paper describes the development and
evaluation of an object-oriented neural network
model that was developed to predict speed at a
detector station up to 15 minutes into the future
and shows how similar models were developed for
freeway travel time estimation. The results re-
ported in this paper clearly demonstrate the fea-
sibility of implementing this approach for freeway
short-term traffic forecasting and the potential for
its implementation in other real-time applications
such as arterial travel time estimation and auto-
matic incident detection.

2. Previous research work
A number of traffic prediction algorithms have

been developed or proposed over the last two de-
cades. Their structure varies in the degree of so-

phistication, complexity and data requirements.
Inductive loop detectors, embedded in the freeway
pavement, are typically used to obtain the traffic
data needed for these algorithms. Some of the
most widely used traffic prediction models are
those based on spectral analysis, ARIMA time-
series models, Box—Jenkins analysis and Kalman
filtering (Clark et al., 1993). However, these
models have been shown to exhibit varying levels
of performance especially during congested con-
ditions (Okutani and Stephanedes, 1984). Some of
the disadvantages of previous models also include
the averaging (smoothing) of input data over long
time intervals (e.g., 5 minutes). This may result in
obscuring many of the time-space relationships in
the data and could be a significant factor con-
tributing to their poor predictive performance. It
should be mentioned here that prediction errors in
excess of 25% have been reported in a number of
studies where such smoothing techniques have
been used (Blue et al., 1994).

More recently, a number of studies have also
investigated neural networks for predicting short-
term traffic conditions (e.g., see Dougherty et al.,
1994; Smith and Demetsky, 1994; Dougherty,
1995). The main limitation of these studies, how-
ever, is that they mainly implement static neural
network architectures which may not fully capture
the true dynamics of the underlying traffic data.

In contrast to previous studies, this paper dis-
cusses an object-oriented dynamic neural network
model for predicting short-term traffic conditions.
The object-oriented approach draws on recent
advances in the theory of neural computation
based on the principle of local rules of interaction
among simple neural components (Principe et al.,
1999). Using this approach, the neural network
model is divided into functional blocks which
communicate with each other in planes of activa-
tion which implement both the neural network and
learning dynamics. A hierarchy of classes, which
encapsulate the standard rules of interaction, al-
lows complex network topologies to be con-
structed by simply interconnecting a small number
of instantiated classes (Principe et al., 1999). This
approach provides for modelling complex inter-
actions such as mixing supervised and unsuper-
vised learning rules in the same network or
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incorporating a recurrent processing element into
the hidden layer of a feed-forward topology
without the need for deriving new learning equa-
tions. Due to its object-oriented nature, this ap-
proach specifies what components do and how
they interact with each other, rather than specify-
ing rigid implementation of functions as in con-
ventional programming (Principe et al., 1999).

The feasibility of the object-oriented approach
is demonstrated in this paper through a time-lag
recurrent network (TLRN) which was developed
for predicting short-term speed data (up to 15
minutes into the future) on a section of the Pacific
Highway between Brisbane and the Gold Coast in
Queensland, Australia. The TLRN was trained via
trajectory learning using a back-propagation
through time (BPTT) algorithm. The paper also
demonstrates how the object-oriented approach
allows for modelling complex networks with a
mixture of learning rules and processing element
interactions which previously were difficult to
model using conventional neural network para-
digms.

3. Data for model development and evaluation

The neural network models presented in this
paper were developed using field data collected
from four inductive loop detector stations installed
on a 1.5-km section of the Pacific Highway be-
tween Brisbane and the Gold Coast (Fig. 1). In-

Pacific Highway

To Gold Coast —#

485m
Helensvale Interchange

(s0) (s1)

490m

255

ductive loop detectors were installed at
approximately 500 m intervals to collect speed and
flow data from each detector station (Lam et al.,
1996). The raw data used in this study were col-
lected over a 5-hour period on 2 days in April 1995.
The 5-hour period comprised 2 hours of peak and 3
hours of non-peak conditions. The raw data from
the three sections were then averaged over 20 sec-
onds cycles resulting in a total of 5000 observations
to be used in model development and evaluation.

The master data set (comprising 5000 observa-
tions) was divided into three data sets to be used
for training, cross-validation and testing. The
training set (comprising 60% of the data) was used
for determining the network parameters while the
cross-validation data set (10% of the data) was
used to prevent the network from learning the
idiosyncrasies in the training set and thus enable
the model to generalise better. A third test set
(comprising 30% of the data) was set aside for
validating the performance of the trained models.
This test set was independent of the data sets used
for model training. Table 1 shows the breakdown
of observations in the three data sets.

4. Neural network training

In order to develop a neural network model to
perform traffic prediction, the network needs to be
trained with historical examples of input-output
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Fig. 1. Schematic of the Pacific Highway section used for data collection.
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Table 1
Number of observations in the data sets used for model
development

Data set Percentage of Number of
master data set observations
((\ 0)

Training 60 3000

Cross-validation 10 500

Testing 30 1500

Total 100 5000

data. This paper will present the results for speed
prediction only. Speed measurements from the
current time interval (¢y) at a given detector station
form the input to the neural network model. The
output of the model comprises the speed mea-
surements at the same station at some future time
interval ¢,.

4.1. Neural network architecture

As part of the model development process, de-
cisions must be made about the architecture of the
neural network. A number of experiments were
conducted to determine the best neural network
architecture. Four neural network models were
developed to predict speed in the next time interval
(i.e., 20 seconds into the future) based on current
speed measurements. The models were then eval-
uated based on the prediction errors for the three
data sets described earlier. A brief description of
each of the models developed in this study is
provided below (Principe et al., 1999).

4.1.1. Multilayer perceptrons ( MLPs)

These layered feed-forward networks were
trained with static back-propagation. Their main
advantage is that they are easy to use, and that
they can approximate any input—output map. The
key disadvantages, however, are that they train
slowly and that they implement static neural net-
work architectures which may limit their predictive
capabilities. These networks are presented here to
serve as a base scenario against which other dy-
namic architectures can be compared.

4.1.2. Recurrent networks

These include both the fully and partially re-
current networks. Fully recurrent networks feed
back the hidden layer to itself. Partially recurrent
networks start with a fully recurrent network and
add a feed-forward connection that bypasses the
recurrency (Principe et al., 1999). These networks
can have an infinite memory depth and thus find
relationships through time as well as through the
instantaneous input space.

4.1.3. TLRNs

Unlike most other neural network architectures
which are purely static classifiers, these TLRNs are
extended with short-term memory structures
which makes them more suitable for non-linear
time series prediction, system identification and
temporal pattern classification.

4.1.4. Hybrid networks

The hybrid networks tested in this study com-
prised a combination of a principal component
analysis (PCA) network and a TLRN. These net-
works combine both supervised and unsupervised
learning in the same topology. Principal compo-
nent analysis is an unsupervised linear procedure
that finds a set of un-correlated features (principal
components) from the input. A supervised proce-
dure is then used to perform the non-linear clas-
sification from these components (Principe et al.,
1999).

Each of the above models was trained on the
training data set for a maximum of 1000 cycles. At
the end of each cycle, the trained model was tested
on the cross-validation set and the prediction error
(i.e., mean squared error (MSE)) was computed. If
the prediction error decreased, the model was
saved and the training was continued. Training
was stopped when the prediction error on the
cross-validation data increased by a specified
threshold. Table 2 below presents the results for
each of the networks investigated in this study.
These results clearly demonstrate the superior
predictive performance of the dynamic neural
network architectures when compared to the static
MLP.
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Table 2
MSE of predicted speed for a number of neural network architectures
Network type MSE
Training set Cross-validation set Test set Average of three sets
MLP 0.0253 0.0261 0.0098 0.0204
Hybrid 0.0087 0.0075 0.0096 0.0086
Recurrent 0.0088 0.0077 0.0075 0.0080
TLRN 0.0073 0.0076 0.0086 0.0078

5. Model performance evaluation

Based on the results reported in Table 2, the
TLRN model was selected for further investiga-
tion. Table 3 below lists the performance results
for nine TLRN models that were developed to
provide speed forecasts for prediction horizons up
to 15 minutes. The average percent errors (com-
puted as the percentage difference between the
actual and predicted speed) are based on the test-
ing data set and are indicative of the generalisation
performance of the model when applied in the
field. These results clearly show that the neural
network models are capable of predicting speed
data up to 5 minutes into the future with a high
degree of accuracy (90-94%). The accuracy of the
models was found to decrease only to 88% and
84% for prediction horizons of 10 and 15 minutes,
respectively.

Sample plots of actual and predicted speed
measurements (20 and 60 seconds into the future)
are presented in Figs. 2 and 3, respectively. These
plots clearly demonstrate the high predictive ac-
curacy of the models during both normal and in-
cident conditions.

Table 3
Speed performance measures for different prediction horizons

Speed (km/hr)

Time

— Actual Speed — Predicted Speed

Fig. 2. Sample plot of actual and predicted speeds for a
20-seconds prediction horizon.

6. Freeway travel time estimation

The effectiveness of a wide range of ITS control
strategies designed to alleviate traffic congestion
depends heavily on the accuracy, credibility and
reliability of travel time estimates. Dynamic esti-
mates of travel time can be used to inform drivers
of expected delays and travel times to their desti-
nations and are important inputs into a number of
real-time applications such as automatic incident
detection and dynamic route guidance.

Prediction horizon Prediction error (MSE) (10~%)

Average percent error

Training set

Testing set

Average of two sets (%0) (testing set)

20 seconds 73 86
40 seconds 85 99
1 minutes 95 111
2 minutes 126 129
3 minutes 156 151
4 minutes 183 172
5 minutes 215 199
10 minutes 337 358

15 minutes 443 522

80 6

88 7
103 7
127 8
154 8
178 9
207 10
348 12
483 16
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Fig. 3. Sample plot of actual and predicted speeds for a
60-seconds prediction horizon.

The next section describes briefly how the
modelling framework presented previously has
been implemented to estimate travel times on the
same sections of the Pacific Highway.

6.1. Modelling framework

The neural network freeway travel time esti-
mation modelling framework is shown in Fig. 4.
This modelling framework is based on the hy-
pothesis that knowledge of current traffic condi-
tions and demands to use the facility are sufficient
indicators for predicting the future state of traffic
on a freeway section a few minutes into the future.

Consider the section of freeway shown in
Fig. 4(a) which is defined by upstream and
downstream detector locations. Traffic conditions
at each station will be determined through two
traffic variables. These are speed (km/h) and flow
(number of vehicles passing the loop detectors in a
unit time). The neural network to be used for
prediction consists of an input layer comprising
speed and flow data from the upstream and
downstream stations as shown in Fig. 4(b). The
output of the neural network is the travel time
within the section at some future state (e.g.,
20 seconds to 15 minutes into the future).

Fig. 4 illustrates how the neural network model
works when performing travel time estimation
within the section. The current data (at time
interval ¢) from the upstream and downstream

stations are used as input to the model. The neural
network model then undergoes a training process
during which the weights associated with the inter-
connections and thresholds associated with the
nodes or processing elements are established. The
output of the model represents the travel time
within the same section at some future state (¢ + n,
where n = 20 seconds to 15 minutes). These output
estimates are then compared with the historical
travel time values which were determined by video
taping the sections under consideration and cal-
culating travel times based on vehicle license plate
matching. Prediction errors (degree to which the
predicted travel times differ from the actual values)
are computed. The training process continues until
the prediction errors become very small and the
network parameters converge to values that allow
it to perform the desired mapping for each input—
output example. Once the network is trained and
its performance is shown to be satisfactory, it can
then be used on-line to provide travel time pre-
dictions based on new real-time data.

6.2. Neural network model inputs

Table 4 shows the different input parameters
tested in this study and their associated MSE re-
sults. These results clearly show that the upstream
and downstream speeds are the most critical inputs
to the model. The best performance model (an
average MSE of 35 x 107 for the three data sets)
is obtained by using speed and flow from both the
upstream and downstream stations. Based on
these results, it was decided to implement the
model using speed and flow inputs from both the
upstream and downstream stations.

6.3. Model performance evaluation

Table 5 lists the performance results for a
number of models that were developed to predict
travel times for prediction horizons up to 15
minutes. These results clearly show that the neural
network models are capable of predicting travel
times up to 15 minutes into the future with a high
degree of accuracy (93-95%).
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Fig. 4. Neural network freeway travel time estimation modelling framework.

7. Conclusions

The results reported in this paper clearly dem-
onstrate the superior predictive performance of the
dynamic neural network architectures (e.g.,
TLRN, recurrent and hybrid networks) compared

to the static classifiers (e.g., MLPs). These results
also demonstrate the feasibility of using the object-
oriented neural network approach for short-term
traffic forecasting. The models described in this
paper were capable of predicting speed data up to
5 minutes into the future with a high degree of
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Table 4
MSE of predicted travel times for different inputs*

Neural network input

Prediction error (MSE) (10~%)

Upstream® Downstream Training Cross-validation set Testing set Average of three sets
Speed Flow Speed Flow

v v v v 95 1 9 35
v X v v 97 11 8 39
v X v X 99 9 9 39
v v v X 99 9 11 40
X v v v 134 12 15 54
X X v v 152 13 15 60
X v v X 139 28 16 61
v v X v 318 47 20 128
v v X X 340 47 19 135
v X X v 343 47 18 136
X v X v 1140 90 94 441

# ¢ input included; x: input excluded.

® Average section length between upstream and downstream stations is 497 m (see Fig. 1).

Table 5

Travel time performance measures for different prediction horizons

Prediction horizon Prediction error (MSE) (107°)

Average percent error

Training set

Testing set

Average of two sets (%0) (testing set)

20 seconds 97 12 55 5
1 minutes 167 14 91 6
2 minutes 285 24 155 6
4 minutes 647 24 346 7
S minutes 945 24 485 7
10 minutes 1039 33 536 7
15 minutes 1299 37 668 7
accuracy (90-94%). Similar models that were de- Acknowledgements
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