Multi-Agent Reinforcement Learning for Traffic Light Control

Marco Wiering

MARCOQCS.UU.NL

University of Utrecht, Department of Computer Science, Postbox 80 089, 3508 TB Utrecht, The Netherlands

Abstract

This paper describes using multi-agent rein-
forcement learning (RL) algorithms for learn-
ing traffic light controllers to minimize the
overall waiting time of cars in a city. The RL
systems learn value functions estimating ex-
pected waiting times for cars given different
settings of traffic lights. Selected settings of
traffic lights result from combining the pre-
dicted waiting times of all cars involved. We
investigate RL systems using different kinds
of global communicated information between
traffic light agents. We also show how the
value functions can be used by the driving
policies of cars to select optimal routes to des-
tination addresses. The experimental results
show that the RL algorithms can outperform
non-adaptable traffic light controllers, and
that optimizing driving policies is very useful.

1. Introduction

In traffic control, we are interested in enhancing so-
cial welfare for road-users such as minimizing traveling
time or maximizing safety. An important traffic con-
trol problem is optimizing multiple cooperating traf-
fic light controllers so that the total waiting time of
cars before traffic lights is minimized. Since optimizing
traffic light controllers by hand is a complex and te-
dious task, we study how reinforcement learning (RL)
algorithms can be used for this goal.

Learning in multi-agent systems. The traffic light
control problem consists of multiple traffic nodes (in-
tersections) containing a set of traffic lights connected
to each other by an infrastructure. When we model
traffic lights and cars as agents, we want to optimally
deal with the behavior of each agent and with their in-
teractions. For optimizing the behavior of each agent
in the multi-agent system (MAS) we can employ rein-
forcement learning (RL) algorithms such as Q-learning
(Watkins, 1989). This is not completely new: Tan
(1993) used multi-agent Q-learning (MAQ-L) for a

predator-prey problem. Littman and Boyan (1993)
used MAQ-L for network routing and showed that
multi-agent RL provides useful tools for such complex
problems. Mataric (1994) used RL to train a group of
robots to collect pucks. Schaerf, Shoman, and Tennen-
holtz (1995) used a multi-agent RL system for learning
load balancing. Crites and Barto (1996) used MAQ-L
for training elevator dispatchers in a simulated envi-
ronment and obtained better controllers than a set of
fixed controllers used in practice.

Model-based RL for MAS. Most former ap-
proaches based on RL to optimize MASs used model-
free (direct) RL such as Q-learning (Watkins, 1989)
and TD(A)-methods (Sutton, 1988) to optimize sin-
gle agent behaviors. Previous comparison studies have
shown advantages in using model-based RL (MBRL)
(see Atkeson & Santamaria, 1997; Moore & Atke-
son, 1993; Wiering, 1999). In model-based (indi-
rect) RL, a transition model is estimated and dynamic
programming-like methods are used to compute the
value function mapping agent states to expected long
term reward. This can speed up learning time dramat-
ically. We will use MBRL to learn to estimate waiting
times of cars given particular input states.

Co-learning. We also study how we can use the same
RL systems and learned value functions to optimize
the paths which cars take to arrive at their destination
address. Since the value functions are then exploited
by two types of agents (cars and traffic lights) and
are adapted based on decisions of all agents, agents
cooperatively learn the shared value functions. We will
use the term co-learning for this joint learning strategy.
Co-learning can be used if all agents share the goal of
using policies which minimize the same value function.

Outline of this paper. Section 2 describes the traf-
fic light simulator. Section 3 describes several MBRL
methods employing different kinds of communication
to optimize the traffic light controllers and also de-
scribes how they can be used for co-learning driving
policies. Section 4 describes the experimental set-up
and shows experimental results. Section 5 discusses
the findings and Section 6 concludes.

5 od oo od 515 oo
O I 00| S a 00| 'y 00|
-
-
- | - -
Bod [9787 Tood [BS] fod M [® E
oo olo looe| o1®] 9o o
o od ol M @9 oo oo
IR M R = I =
-
- [-
r (]9 Fos ¥ (®[5] bod DS
o 188 g 318l Gog B

Figure 1. The traffic control problem. The goal is to learn
traffic light policies which minimize the overall time cars
need to go to their destination address. The complete net-
work containing all 6 intersections is called the city. En-
trees to and exits from the city are given by the open side-
roads. At each intersection, there are 8 traffic lights opera-
tional. Before each traffic light there is a specific road-lane
discretized into a number of possible places for cars.

2. Traffic Simulator

A traffic light control problem is given by a network
where edges represent roads and nodes represent inter-
sections where traffic lights are operational. There are
cars coming from outside the system and these follow
a policy to drive over the roads (while waiting for red
traffic lights) until they have arrived at their destina-
tion address (see Figure 1).

Traffic light model. At each traffic node (intersec-
tion), there are 8 traffic lights operational: 4 for go-
ing straight ahead or to the right, and 4 for going to
the left. We prevent accidents by not allowing traffic
light states which make collisions between cars possi-
ble. Possible settings for traffic lights are: two traf-
fic lights from opposing directions allow cars to go
straight ahead or to turn right (2 possibilities), two
traffic lights at the same direction of the intersection
allow the cars from there to go straight ahead, turn
right or turn left (4 possibilities). This makes a total
of 6 possible decisions (actions) for each traffic node.!

Behavior of cars. Before each different traffic light,
there is a specific road-lane discretized into a num-
ber of places. At each time-step, new cars are gen-
erated with a particular destination address and en-
ter the network (city) at the last place of one of the
side-entrance road-lanes. We assume for now that cars

'We have not allowed the possibility that cars from
road-lanes of opposing directions turn left at the same time.

follow a random policy to arrive at the destination ad-
dress along one of the shortest paths, although as we
will see later, cars could also be adaptive and learn spe-
cific driving policies to minimize their traveling time.
After new cars have been added, traffic light decisions
are made and each car moves to the subsequent place
if this is possible — if it is unoccupied or the car’s pre-
decessor is moved as well. Cars standing in front of a
red traffic light are not moved.

All road-lanes have a limited capacity for storing cars
(we used a maximum of 20 cars). Therefore, it may
happen that cars standing before a green traffic light
cannot continue, since the next road-lane is over-
crowded (and its first car cannot drive). Our simulator
is a discrete event simulator — we do not take acceler-
ation/deceleration times into account nor do we model
different car velocities. We are mostly interested in the
co-operational behavior of traffic nodes and cars.

How to solve this problem? Traffic light control
problems are often solved by optimizing the times each
light is on green and red. These controllers are often
made more advanced by using sensors to infer that at
some point in time no traffic has arrived at a traffic
light so that the light can be set to red. Although
optimizing waiting times may work well, it remains
a hard problem and decisions do not take the exact
environmental state into account, possibly leading to
sub-optimal controllers. That is why RL systems may
be advantageous. These systems can learn to set a
traffic light given a particular environmental input.

3. Reinforcement Learning for Traffic
Light Control

In RL (Kaelbling, Littman & Moore, 1996) we try to
optimize the behavior of an agent by letting it inter-
act with the environment and learn from its obtained
feedback (reward). An agent is situated in an environ-
ment, receives (virtual) sensory inputs and uses these
to select an action by its policy. This policy is opti-
mized by learning from the results of applying different
action sequences given some input. A value function
is used to estimate long term reward intake given that
the agent observes a particular input (state) and se-
lects actions according to its policy. Well-known al-
gorithms for learning value functions are Q-learning
(Watkins, 1989) and TD(A)-learning (Sutton, 1988).
These algorithms update the value function directly
on the sequence of state/action pairs observed dur-
ing the interaction of the agent with the environment.
Model-based RL (Moore & Atkeson, 1993) first learns
a transition model which estimates the probabilities of
making state-transitions given particular actions and

compute average rewards associated to these transi-
tions. Then it uses dynamic programming-like meth-
ods (Bellman, 1961; Barto, Bradtke & Singh, 1995;
Moore & Atkeson, 1993) to compute the value func-
tion. MBRL can significantly speed up learning (Atke-
son & Santamaria, 1997; Moore & Atkeson, 1993;
Wiering, 1999), although it requires a discrete repre-
sentation of the input space and more storage space.

Estimating cumulative waiting time. Each cy-
cle, cars can wait 1 time-step before a traffic light, or
they can drive to the next place. Particular cars are
standing in the queue (a row of cars standing before
a traffic light without a gap between them), and their
movement is dependent on their predecessors and traf-
fic light setting. If cars are not standing in the queue,
they always move one place further. If the light is
green, the first car in the queue immediately crosses
the intersection and starts on the last place of the road-
lane for the next traffic light. After one or more time-
steps, it ends up at some place in a new queue at the
next traffic light or it escapes the city. The goal is to
minimize the cumulative waiting time of all cars be-
fore all traffic lights met before exiting the city. To
do this, each car learns to estimate its waiting time
when the light is green or red and all car predictions
are combined to make the decision of a traffic node.

Global description of the system. Each car is at
a specific traffic-light (t1 € [1..48]), a position in the
queue (place € [1..20]), and has a particular destina-
tion address (des € [1..10]). Since there are 960 pos-
sible places in the network which may be occupied by
a car, there are at least 2969 possible traffic situations.
Since each car has a specific destination address, there
are even more system states. A system state should be
mapped to actions of all 6 traffic nodes, making a to-
tal of 6% possible global actions in our network. Thus,
learning a central controller mapping system states to
actions is infeasible. To deal with so many states and
actions, we independently control traffic nodes — each
controller receives as input the cars (traffic light, place,
and destination)? standing for one of its 8 traffic lights
and selects one of its 6 actions.

Making a traffic node decision. Suppose all cars
would exactly know their waiting time until they arrive
at the destination address given that their traffic light
is currently set to red or green. Then, each car has a
gain for having its light set to green. This gain equals
the difference between its waiting time when the light

We assume that in the near future it is possible for
cars to communicate with intelligent traffic light controllers
which enables them to send place and destination informa-
tion in a real world application.

is red and when it is green. If there are a number of
cars standing before different traffic lights at a traffic
node, we can choose the decision which maximizes the
summed gains of all cars which profit from the deci-
sion. This decision would then be (locally) optimal.

Car-based value functions. For this goal, we will
use car-based value functions stored in lookup tables.
The car-based value functions estimate the total (dis-
counted) expected waiting time before all traffic lights
for each car until it arrives at the destination ad-
dress given its current traffic light, place, and the
decision of the light (red or green). We will write
Q([tl, place, des], action) to denote this value. We will
write V([tl, place, des]) to denote the average waiting
time (without knowing the traffic light decision) for a
car at (¢, place) until it has reached its destination ad-
dress. Note that we use the destination address of the
car, which may help to estimate its waiting time more
accurately. The Q- and V-functions are distributively
stored in the traffic light controllers which communi-
cate with cars and other traffic lights. To learn the Q-
and V-functions, traffic nodes may request V-values of
other traffic nodes.

Given the current traffic situation, we make a choice
for each traffic node node as follows. The gain-variable
Whode(A) computes the advantage (gain) of the de-
cision of the traffic node, A, which sets two specific
traffic lights to green:

Table 1. Selecting a traffic node decision by summing indi-
vidual gains.

(1) For all A, one of the 6 decisions:
(1.a) Whoae(A) =0
(1.b) For all traffic lights tI set to green by A
(1.b.1) For all cars in the queue at the traffic light ¢,
with their destination and place
(1.b.1.a) Wiode(A) = Whode (A)+
Q([tl, place, des], red) — Q([tl, place, des], green)
(2) Select the decision A of the traffic node with maximal
Wnode (A)

If a car is not waiting in the queue (i.e. the car can
still drive onwards until it meets the queue), we do not
let it vote for the total waiting time, since the current
decision of the traffic light does not affect the current
transition of the car.

Although the Q-values are real numbers, we have used
integers for representing the variables Wi, qe (A), which
allows for exploring the results of decisions which seem
almost as good as the currently best decision. Partic-
ular systems, however, suffered from this integer rep-
resentation so that we had to use real numbers for
their gain variable (we will later denote the use of real
numbers by a system as system”).

Communicating global information. Using
MBRL we have different design choices for using cur-
rent information about the state of other traffic lights
for computing waiting times. This kind of global in-
formation could be communicated between traffic light
agents. If we would know how many cars are stand-
ing at each next possible traffic light, we can improve
the probabilistic estimates of the place where the first
car will enter the next queue. Thus, we could predict
waiting times more accurately by instantiating global
(communicated) information. We will discuss three
systems; the first, TC-1 (Traffic Controller 1), does
not use such communication and only uses local infor-
mation for computing waiting times of cars, TC-2 only
uses global information for computing waiting times
for the first car and local information for the other
cars, and TC-3 uses global information for computing
waiting times for all cars.

The transition and reward functions. For com-
puting the @- and V-functions we use state tran-
sition probabilities and a reward function. The
state transition function is given by a lookup
table consisting of the following probabilities:
P([tl, place, des], L, [new_tl, new_place]) where L de-
notes whether the light for ¢/ is red or green. Note
that the destination address des stays the same and
that most car-states only have two possible transitions.
Therefore the transition function does not contain a
huge number of entries. If a car crosses a traffic node,
we compute its state transition probability to the new
traffic light, and new place as that place where it is (at
a certain moment) for the first time standing in the
new queue (1 < new_place < 20). Finally, we com-
pute probabilities P(L|[tl, place, destination]) which
give the probability that the light is red or green for a
car waiting at (¢, place) with a particular destination.
These probabilities are needed to compute the aver-
age waiting time V' ([tl, place, destination]). Finally,
we use a reward function as follows: if a car stays at
the same place, then R([tl, place], [tl, place]) = 1. Oth-
erwise R = 0 (the car can advance).

TC-1: Computing the V- and Q-functions. For
our first system, TC-1, we compute the Q-function as:

Qt,p.d 1) = Y

(t',p")
(R([tL, pl, [t p']) + V([9, d])) (1)

P([tl,p, d]7L7 [tllap’])

Where + is the discount factor (0 < v < 1) which en-
sures that QQ-values are bounded. Thus, the expected
discounted waiting time of a car given L equals the
current waiting probability (which is 1 for a red light)
plus the average waiting time from the next possible

car-states.®> We compute the V-function using the Q-
function and the probabilities that the light is green
or red for a car as follows:

ZP LI[tl, p,d]

After each simulation step we update the transition
probabilities and compute the V-values and Q-values
by Real Time Dynamic Programming (Barto, Bradtke
& Singh, 1995) using a single value-function iteration.

TC-2. The first communicating system uses the
number of cars standing at the next possible traf-
fic lights (where the first car can go to) to com-
pute the state-transition probabilities of the first car
only. We estimate the transition probability of the
car to a next traffic light tI’ given that at I’ cur-
rently Ky, shortly written as K, cars are standing
in the queue. This information should be communi-
cated between traffic lights. To compute the value
functions, we will make use of transition probabilities
P([tl, place, des], K, green, [tl',p]). We only use this
equation if the light is green:

)Q([tl,p, d], L)

V(Jtl,p,d

Q([tl, p,d], green) = Z P([tl,p,d], K, green, [tl', p'])

(t'.p")
(R([tL, pl, (¢, p']) + V([',)

Note that here the value of p is always 1 — for the
other cars we use Equation (1) to compute the Q-
values. To compute V', we again take the average of the
Q-values according to the probabilities that the light
is green or red. Note that we do not use K as argu-
ment in the Q- and V-functions — K is not part of the
car-state, but is communicated and then instantiated
in the transition function to compute the value func-
tions. This saves us from an additional dimension in
the Q-function. The TC-2 system may work fine, but
has particular shortcomings: (1) we only look ahead a
single traffic light in the future — situations at traffic
nodes some steps further are not used. (2) Predicting
waiting times of other cars waiting in the queue does
not immediately take advantage of this communica-
tion (although there is delayed, indirect, communica-
tion due to subsequent value-iteration steps).

TC-3. TC-3 uses global knowledge for computing
waiting times for all cars. It uses state transition prob-
abilities: P([tl, place,des], L, K, [new_tl, new_place])
for all cars which determine the state transition prob-
abilities to the next traffic lights even while the car
is not yet in a position to cross the intersection. The

ThlS equatlon very much resembles Bellman’s equa-

tion: ES S A S, ((S S’)+7V(S,))

V-function is computed by summing the expected dis-
counted waiting time (EDWT) at the current traffic
light and the EDWT from the next possible lights:

V([tl,p,d)) = W ([tl,p,d]) + > _ P(L|[t],p,d])
L

Z P([tl,p,d],K,L,[tll,pl])’yV([tl',p"d])
(tl,p")

Where W ([tl, place, des]) is the EDWT at the current
traffic light, and K is the number of cars waiting at
the next possible traffic light #I’. The W-function can
be computed as:

W ([t p,d)) = > P(LI[tl,p,d)Q'([tl,p,d], L)
L

where @' (the intra-node Q-function) denotes the
EDWT at the current light for cars given the decision
of the traffic light:

Q'([tl,p,d],L) =Y _ P([tl,p,d], L, [tl,p])

(R([tL, pl, [t1, p']) + YW ([tL, p', d]))

The Q-values can finally be computed as follows:

Q([tl,p,d],L) = QI([tl,p, d]aL) +

Z P([tl,p,d],K,L, [tllvpl])'yv([tllaplad])
(t1",p")

We compute P([tl, place,des], K, L,[tl', p]) by tracking
a car standing on a specific place. Thus, we record
tuples < tl,place,des, K, L,tl' > and finally associate
them with p, the place where the car arrives in the
next queue. If there are multiple states of a car on
(tl, place) with the same L and Ky, we only count the
transition step to the next (tl',p) a single time (this
is similar to the first visit sampling method (Singh &
Sutton, 1996)).

Adapting the system parameters. For adapting
the systems, we update the state transition probabil-
ities after each time-step by tracking car-movements.
Remember that the reward function is fixed (standing
still costs 1, otherwise the reward/cost is 0). To com-
pute transition probabilities, we just count the number
of transitions from a car-state to all next car-states
and divide these by the total number of transitions
from that car-state.*

Co-learning driving policies. A nice feature of our
car-based value functions is that they can be immedi-
ately used to select a path of traffic lights to the des-
tination address. Note that our city (Figure 1) is like

“For particular systems, we have to take communicated
state information into account as well.

Manhattan and from one starting place to a destina-
tion address there can be multiple shortest paths. The
non-adaptable systems generate at each traffic light
what the options are to go from one traffic light to the
next one in order to go to the destination address and
select one of these randomly. Co-learning can be used
to select among these shortest paths that path with
minimal expected waiting time. For TC-1, we com-
pare the values V([tl',1,des]) to determine the best
next traffic light ¢’ for a car crossing an intersection.
For TC-2 and TC-3, we can compute the Q-values for
going to the next traffic light ¢I' using global informa-
tion. We compute the values Q(tl’) for going to a next
traffic light (given the current light ¢l) as follows:

Q') = P([t, 1,d], K, green, [t!', p))V ([t!', p, d])

p

and choose the traffic light ¢/’ with the lowest Q(¢l").

4. Experiments

We execute experiments with 10 systems: a random
controller for each traffic node, a fixed controller which
iterates over all traffic node decisions, a controller
which lets the largest queues go first, a controller which
tries to let most cars pass the intersection, and our
three RL systems: TC-1, TC-2, and TC-3, with or
without co-learning. For our experiments we use the
city depicted in Figure 1.

Set-up of traffic simulations. The traffic pattern
is a fully randomized pattern where random starting
traffic lights at the border of the city (20 possibili-
ties) are selected for each newly inserted car and a
random destination addresses is used for the car (10
possibilities).> At each cycle (time-step), 1 to 8 cars
are inserted in the city, all with different starting traffic
lights, since cars cannot occupy the same initial place
at the same traffic light. Therefore it is also possible
that the traffic network becomes saturated, where cars
are refused since we cannot add more cars when all 20
possible starting positions are occupied.

Systems and parameters. The Random system se-
lects the decision at each traffic node randomly, the
Fixed system starts with decision 1 for all traffic nodes
for one time-step, then selects decision 2 at the next
time-step, until it has selected all six decisions and
starts again with decision 1. The Longest Q system
counts the number of cars which would not have to
wait for a red light for each decision and selects the
traffic node decision leading to the maximum. The

*Due to particular impossible paths, generated cars can-
not use all 200 combinations.

Table 2. Final waiting time results for different systems
when adding 1-3 cars per time-step. Results are averages
over 10 simulations. " = used a real number for the gain

variable.

SYSTEM 1 CcAR 2 CARS 3 CARS

RANDOM 10.9 +£ 0.4 19.7 £ 1.2 174 £ 11
FIXED 5.6 &+ 0.05 9.5+ 0.4 69 £ 6

LoNGEST Q 0.47 £ 0.02 1.50 £ 0.04 4.4 +£0.2
MosT CARs 0.47 £ 0.02 1.60 = 0.07 4.6 £0.4
TC-17 0.47 £ 0.02 1.50 £0.03 3.9 +£0.3
TC-1" co 0.45 £ 0.03 1.44 £ 0.07 3.9+0.4
TC-27 0.47 £0.02 1.52 £0.06 4.2 £0.2
TC-2" co 0.45 £ 0.02 1.36 £ 0.06 3.9 +0.3
TC-3 0.46 £ 0.02 1.48 £0.07 4.0 £ 0.3
TC-3 co 0.44 £ 0.02 1.36 £ 0.05 3.6 +£0.3

Table 3. Final waiting time results and the nr. of refused
cars (1K =1000) for the systems when adding 4 cars per
time-step. * = 20% randomness is used in the action se-
lection.

SYSTEM WAITING TIME REFUSED CARS
RANDOM 171 £ 13 26K + 1K
FIXED 70 £ 7 226K + 11K
LoNGEST Q* 3683 + 1297 941K + 43K
MosT CARS 706 £+ 1830 6K £+ 9K
TC-1 190 £+ 108 15K + 1K
TC-1 co 70 £+ 22 3K + 2K
TC-2 128 + 45 10K £+ 2K
TC-2 co 58 £+ 22 3K + 2K
TC-3* 106 £ 12 49K + 24K
TC-3 co* 89 + 20 14K £+ 17K

Most cars system examines how many cars can pass
an intersection given some traffic node decision, and
selects the decision which is expected to let most cars
(0-2) cross an intersection. TC-1, TC-2, and TC-3,
with or without co-learning use v = 0.99, one value-
function iteration per time-step and no exploration,
except for systems which get stuck in dead networks
where no cars can drive anymore (which sometimes
happens with the TC-3, Longest Q, and Most cars
systems), for which we add 20% random actions to the
decision policy. We let each system run until 50,000
cars have exited the city and record simulation results
after each 2000 cars have left the city. Results are
averages over 10 simulations.

Experimental results. Table 2 shows the final (after
50,000 steps) average waiting time results for the last
2000 cars exiting the city when adding 1 to 3 cars per
time-step. When adding a single car at each cycle,
TC-3 with co-learning works best, closely followed by
the other co-learning RL systems. The random sys-
tem performs worst with a waiting time which is more
than 23 times longer than the best algorithms. When

adding 2 cars the results are quite similar. TC-3 and
TC-2 with co-learning works best followed by TC-1
with co-learning. When adding 3 cars, TC-3 with co-
learning works best followed by the other RL systems.
Longest Q performs 22% worse and Most cars performs
28% worse than TC-3 with co-learning. The random
and fixed systems again come last and even result in
saturating behavior — see Figure 2(A). Note that al-
though the differences are not so large, TC-3 with co-
learning always significantly (t-test, pepance < 0.01)
outperforms all fixed systems.

Adding four cars. Table 3 shows the results when
adding 4 cars. Here the network starts to saturate for
all algorithms. Therefore not only the average waiting
time is important, but also the number of refused cars.
For Longest Q and TC-3, we had to add 20% noise in
the action selection, since otherwise they got stuck in
traffic situations where no cars could move anymore
and no cars were able to enter the city. Such “dead”
network states result from deterministic policies which
set lights to green for cars which cannot cross the in-
tersection, since the next road-lane is full and the next
(or the one after the next) traffic light is set to red.

TC-2 with co-learning works best, followed by TC-1
with co-learning. They have the lowest waiting times
and refuse the lowest number of cars. Note that the
number of refused cars would make aligning traffic net-
works more crowded. Apparently, optimizing driving
policies in busy traffic situations is very useful here.
TC-3 refuses many cars during the initial learning
phase, but finally obtains the best performance of the
non co-learning systems. The Most cars algorithm re-
sults in fluctuating performance (waiting times). It
does not refuse so many cars, though, which is differ-
ent from the Longest Q system which refuses by far
the most cars.

Saturation behavior for adding more cars. Fig-
ure 2(A) shows the total number of refused cars during
a run when we increase traffic loads and Figure 2(B)
shows the average final waiting times. When adding
5-8 cars, TC-2 with co-learning refuses the least num-
ber of cars. It is followed by TC-1 with co-learning.
The Longest Q system performs worst. The fixed sys-
tem also refuses many cars and this explains why its
average waiting time is shortest for highly crowded
traffic. The random system works quite well for very
crowded roads; it seems that for such cases random
decisions work reasonably well. The Most cars algo-
rithm performs quite well, but suffers from fluctuating
performance levels. All systems can use co-learning
of driving policies to minimize the number of refused
cars. The reason that TC-2 with co-learning works

1e+06]
(2}
8
& 100000]
T
5
e
Qo
£
=1
Z 10000]

1000

100000

10000 —
[2)
8
o

1000 —
g
B
5 100 i
Q
£
2 10F 4
=
=

1 -
01 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8

Number of carsinserted

Figure 2. A comparison between the different adaptable
and fixed systems on more or less crowded traffic patterns.
(A): The average number of refused cars during an entire
run. (B): The average waiting time of the last 2000 cars
exiting the city. Results are averages over 10 simulations.

best, may be that it continuously adapts its policy,
thereby making it non-stationary. Therefore it can re-
act when particular decisions do not make sense, like
setting the light to green while the first car cannot
go to an overcrowded next road-lane. TC-3 is not
able to continuously change its policy, and therefore
it sometimes ends up in dead networks (when used
without randomness). The reason is that only intra-
Q values are adapted when cars remain waiting, and
this is sometimes not sufficient to change the outcome
of the voting process, since inter-Q values may have a
large impact on the decision. Furthermore, communi-
cating K is less useful if K is almost always 20 and the
first car cannot drive. The Longest Q system suffers
a lot from deadlock situations (no car can drive given
some decisions of the traffic lights), but it is strange
that even with 20% randomness it cannot overcome
its problems (with more randomness it performs bet-
ter, but even with 90% randomness, it performs worse
than the random system).

5. Discussion

For low traffic loads, constructing good (near-optimal)
fixed controllers is not difficult, since all traffic nodes
can operate locally. Therefore the gain in using RL for
learning traffic light controllers is quite small, although
learning driving policies is still useful. When we in-
crease traffic load, the amount of interaction between
traffic nodes increases, and the locally well performing
fixed systems do not work well anymore. Furthermore,
the dynamics of crowded traffic patterns are complex
so that it is hard to design better controllers. Here,
using RL systems for traffic light control is clearly ben-
eficial. Co-learning driving policies is also very useful,
since it helps to direct traffic flow in the city.

Co-learning. Learning driving policies at the same
time as learning traffic light controllers show interest-
ing co-learning phenomena: traffic nodes which are
quite busy and thus have a hard task minimizing over-
all waiting time are relieved by the intelligent driving
policies circumventing such intersections. Thereby the
cars are reactively spreading in the city and help to
minimize the shared value functions.

Communication. The use of communicated infor-
mation can help the RL systems to optimize traffic
light controllers. Since traffic nodes are highly inter-
dependent when regulating highly crowded traffic, we
could also design different communication schemes in
which traffic node decisions are communicated. We
are currently studying methods for efficiently evaluat-
ing global decisions in this way.

Related work. Thorpe and Anderson (1996) used
direct RL to learn traffic controllers on a simulated
traffic control problem consisting of a network of 4
x 4 traffic light controllers. They modelled average
speed, queueing and acceleration/ deceleration of cars.
The controller was trained on a single intersection af-
ter which it was copied to the other intersections. Re-
sults showed that using their best state representation
(which indicates which segments of the roads were oc-
cupied by cars) RL learned to outperform algorithms
which used fixed waiting times or allowed the largest
queue to go first. A big difference between their and
our approach is that their traffic node policy selects de-
cisions based on a combined representation of the local
traffic situation. To deal with the explosive number of
states, they abstract away from a lot of information.
Instead, we use car-based value functions and a voting
scheme for selecting actions. This has the advantage
that (local) optimal controllers may be obtained if the
value functions are accurate, while we still do not suf-
fer from huge state spaces. Furthermore, the car-based
value functions can be used by the driving policies.

Moriarty and Langley (1998) also used RL for dis-
tributed traffic control. Their approach enabled cars
to learn lane selection strategies from experience with
a traffic simulator. Experimental studies showed that
learned strategies let drivers more closely match their
desired speeds than hand-crafted controllers and re-
duce the number of lane changes. Their approach
also focuses on distributed car-based controllers, which
makes it easy to take specific desires/goals of drivers
into account such as desired speed or destination.

6. Conclusion

We have presented a set of multi-agent model-based
RL systems for traffic light control which can also be
used for optimizing driving policies for cars. Experi-
mental results show that the RL systems can outper-
form a number of non-adaptable systems. One of the
systems, TC-3, uses global communication between
traffic lights and is able to surpass the performance
of the other algorithms when the traffic is not very
crowded. If the networks start to saturate when we in-
crease traffic load, the RL systems clearly outperform
fixed controllers and also profit a lot from co-learning
driving policies.

In future work, we would like to test our systems on
more realistic traffic simulators in which we also want
to add public transport which should get priorities for
crossing roads, since they carry more passengers. In
another direction, we want to examine whether other
multi-agent problems can profit from simple communi-
cation between agents. For this, we want to use MBRL
algorithms since they are quickly able to deal with dif-
ferent kinds of instantiated information. The problems
we want to focus on are network routing, (process)
scheduling, robot soccer, and forest fire control.

Acknowledgements

Thanks to Prof. F.C.A. Groen, Ben Krose, Stephan
ten Hage and the anonymous reviewers for many help-
ful comments.

References

Atkeson, C. G., & Santamaria, J. C. (1997). A compar-
ison of direct and model-based reinforcement learn-
ing. In Proceedings of the International Conference
on Robotics and Automation.

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995).
Learning to act using real-time dynamic program-
ming. Artificial Intelligence, 72, 81-138.

Bellman, R. (1961). Adaptive conirol processes. Prince-
ton University Press.

Crites, R., & Barto, A. (1996). Improving elevator per-
formance using reinforcement learning. Advances in
Neural Information Processing Systems 8 (pp. 1017—
1023). Cambridge MA: MIT Press.

Kaelbling, L. P.; Littman, M. L., & Moore, A. W.
(1996). Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4, 237-285.

Littman, M., & Boyan, J. (1993). A distributed rein-
forcement learning scheme for network routing. Pro-
ceedings of the First International Workshop on Ap-
plications of Neural Networks to Telecommunication
(pp. 45-51). Hillsdale, New Jersey.

Mataric, M. J. (1994). Interaction and intelligent be-
havior. Doctoral dissertation, AT Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, MA.

Moore, A. W., & Atkeson, C. G. (1993). Prioritized
sweeping: Reinforcement learning with less data and
less time. Machine Learning, 13, 103—130.

Moriarty, D., & Langley, P. (1998). Learning coopera-
tive lane selection strategies for highways. Proceed-
ings of the Fifteenth National Conference on Artifi-
cial Intelligence. Menlo Park, CA: AAAT Press.

Schaerf, A., Shoman, Y., & Tennenholtz, M. (1995).
Adaptive load balancing: A study in multi-agent
learning. Journal of Artificial Intelligence Research,
2, 475-500.

Singh, S. P., & Sutton, R. S. (1996). Reinforcement
learning with replacing eligibility traces. Machine
Learning, 22, 123-158.

Sutton, R. S. (1988). Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3,
9-44.

Tan, M. (1993). Multi-agent reinforcement learning:
Independent vs. cooperative agents. Proceedings
of the Tenth International Conference on Machine
Learning (pp- 330-337).

Thorpe, T., & Anderson, C. (1996). Traffic light con-
trol using SARSA with three state representations.
IBM Corporation, Boulder.

Watkins, C. J. C. H. (1989). Learning from delayed re-
wards. Doctoral dissertation, King’s College, Cam-
bridge.

Wiering, M. A. (1999). Ezplorations in efficient re-
inforcement learning. Doctoral dissertation, Intel-
ligent Autonomous Systems Group, University of
Amsterdam.

