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Abstract: The ability to exertreal-time, adaptivecontrol of transportation processes is the core of many intelligent transportation
systems decision support tools. Reinforcement learning, an artificial intelligence approach undergoing development in the machine
learning community, offers key advantages in this regard. The ability of a control adeatmhaelationships between control actions and

their effect on the environment while pursuing a goal is a distinct improvement over prespecified models of the environment. Prespecifiec
models are a prerequisite of conventional control methods and their accuracy limits the performance of control agents. This paper contair
an introduction to Q-learning, a simple yet powerful reinforcement learning algorithm, and presents a case study involving application to
traffic signal control. Encouraging results of the application to an isolated traffic signal, particularly under variable traffic conditions, are
presented. A broader research effort is outlined, including extension to linear and networked signal systems and integration with dynami
route guidance. The research objective involves optimal control of heavily congested traffic across a two-dimensional road network—e
challenging task for conventional traffic signal control methodologies.
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Introduction A key limitation of conventional control systems is a require-
ment for one or more prespecified models of the environment.
The ability to exert real-time, adaptive control over a transporta- The purpose of these might be to convert sensory inputs into a
tion process is potentially useful for a variety of intelligent trans- useful picture of current or impending conditions or provide an
portation systems services, including control of a system of traffic assessment of the probable impacts of alternative control actions
signals, control of the dispatching of paratransit vehicles, and in @ given situation. Such models require domain expertise to
control of the changeable message displays or other cues in aonstruct. Furthermore, they must often be sufficiently general to
dynamic route guidance system, to name a few. In each case, thgover a variety of conditions, as it is usually impractical to pro-
controlling actions should respond to actual environmental Vide separate models to address each potential situation. For ex-
conditions—vehicular demand in the case of a signal system, theample, some state-of-the-art traffic signal control systems rely on
demand for multiple paratransit trip origins and destinations, or @ platoon-dispersion model to predict the arrival pattern of ve-
the road network topology and traffic conditions in the case of hicles at a downstream signal based on departures from an up-
dynamic route guidance. Even more valuable is the ability to stream signal. A generalized model designed to represent all road
control in accordance with an optimal strategy defined in terms of links cannot possibly reflect the impacts of the different combi-
one or more performance objectives. For example, one mightnations of side streets and driveways generating and absorbing
wish to have a signal control strategy that minimizes delay, a traffic between the upstream and downstream signals.
paratransit dispatching system that minimizes wait time and ve- ~ What if a controlling agent could directliearn the various
hicle kilometers traveled, or a dynamic route guidance system relationships inherent in its world from its experience with differ-
that minimizes travel time. ent situations in that world? Not only would the need for model
prespecification be obviated or at least minimized, but such an
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Fig. 1. lllustration of reinforcement learninga) Gridworld; (b) first episodefc) second episodéd) selected final Q-estimate&) one possible
optimal policy

ing, which could be integrated with dynamic route guidance to couraging the robot to learn the shortest possible path to Door B.
provide effective traffic control in highly congested conditions. For this example, assume that the discount rate is 0.9.
Effective traffic control in the face of severe congestion on a Initially, all potential moves from any given grid square, ex-
two-dimensional road network is a challenging task for existing cept that involving passing through Door B from the square in
signal control methodologies. front of it, have a value of zero, in the sense that no reward
appears to be gained by implementing them. On its first journey,
therefore, the robot explores in a random fashion, possibly fol-
Reinforcement Learning: Brief Primer lowing the path shown in Fig. (b), until it eventually passes
through Door B. In doing so, it gains a reward of 100 units and
remains there, ending the current episode. The value assigned to
the move preceding the move through Door B is updated using
In its simplest terms, reinforcement learning involves an agent the reward of 100 units, factored by the discount rate of 0.9, since
that wishes to learn how to achieve a goal. It does so by interact-the reward was gained one time step into the future, to give a net
ing dynamically with its environment, trying different actions in  value of 90 units. On its second journey from Door A, the robot
different situations in order to determine the best action or se- explores until it reaches a square adjacent to that in front of Door
quence of actions to achieve its goal from any possible given B. As before, the preceding move is assigned a value of 90 units,
situation. Feedback signals provided by the environment allow factored by the discount rate of 0.9, to give a net value of 81
the agent to determine to what extent an action actually contrib- units, as shown in Fig.(&). Each journey or episode thereafter
uted to the achievement of the desired goal. may result in another move being assigned a value. At some
To illustrate the concept of reinforcement learning, consider point, the robot might find itself confronted with a choice between
the following simplified example of a mobile robot navigating making a move with zero value and making one with some pre-
within the gridworld shown in Fig. (). This is actually an illus- viously assigned positive value. In this situation, the robot must
tration of Q-learning, developed by Watki($989; Watkins and choose whether or not to explore the move with a current value of
Dayan 1992 and is one of a number of possible reinforcement zero, on the chance that it might be better than exploiting its
learning algorithms and the one that is used in the case studycurrent knowledge by making the move that it knows has a posi-
presented later in this paper. Imagine that the robot starts behindive value.
Door A and that its goal is to pass through Door B, for which it After a sufficient number of episodes, each move from any
gains a reward of 100 units. No other actions are rewarded. Oncegiven square will have been assigned a value. In most practical
it passes through Door B, it remains théperhaps waiting fora  problems, particularly in stochastic domains, many episodes are
further task and gains no further rewards. At each time step, the required before these values achieve useful convergence.(fjg. 1
robot can move to an adjacent grid square but cannot move di-shows a selection of these values, each of which represents the
agonally. Let us also define a discount rate that has the effect ofsum of discounted future rewards if one follows an optimal path
reducing the value of future rewards relative to more immediate from that particular grid square to Door B. The robot has there-
rewards. In this case, the discount rate also has the effect of enfore learned an estimate of the value functi@rAt this point, the

lllustrative Example
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4. The combination of statg actiona, and reward , is then
Sensory inputs describing current state of the environment s. used to update the previous estimate of the Q'V@U_Q (s,a)
recursively according to the following training rule:

8:O‘s,¢':1{rs,a+ Y- MAX [Qtfl(s',a’)] - Qtfl(s,a)} (1)

l Reward r resulting from action a. whered = increment to be added to the previously estimated
Q-value,Q;_1(sa), 10 getQys ) s asa=training rate in the

interval [0,1]; rs,=reward received for taking actioa,

AGENT ENVIRONMENT . . . . .
while in states; y;=discount rate in the intervdD,1], ap-

A plied to future rewardsMAX [ Q;_ (s’ ay] = previously esti-
mated Q-value following the optimum policy starting in state
s'; andQy_4 (s )= Previous estimate of the Q-value of taking
actiona while in states.

Fig. 2. Key elements of Q-learning This particular training rule is relevant to stochastic environ-

Action a.

robot can implement an optimal sequence of actionpoticy, by
greedily taking the action with the highest value, regardless of
where it starts from or finds itself, until it reaches Door B. Fig.
1(e) shows one of several possible optimal policies.

ments such as the traffic environment in the case study out-
lined in the next section. Decreasing the training rate over
time is one of the conditions necessary for convergence of
the Q-function in a stochastic environment. The other condi-
tion requires that each state-action combination be visited
infinitely often, although in most practical problems, the por-
tion of the state-space that is of primary interest will be
visited often but not infinitely often. If penalties are received

More Precise Definition of Q-learning rather than rewards, thilIN function is used in place of
- . . . . MAX'.

Building on the example described in the preceding section, letusg 1 updated estimate of the Q-value is then stored for later

now formulate a more precise, although still basic, definition of reuse. The Q-values may be stored in an unaltered form in a

Q-learning. Consider the system shown in Fig. 2, which shows look-up table, although this requires a significant amount of

the key elements of Q-learning. . , . memory. They may also be used as inputs to a function ap-

1. The agent is the entity responsible for interpreting sensory proximation process designed to generalize the Q-function

inputs from the environment, choosing actions on the basis so that Q-value estimates may be obtained for state/action

of the fused inputs, and learning on the basis of the effects of  compinations not yet visited but similar to combinations that
its actions on the environment. At time the Q-learning have been visited.

agent receives from the environment a signal describing its
current states. The state is a group of key variables that ) L )
together describe those current characteristics of the environ-Adaptive Traffic Signal Control—Case Study Using
ment that are relevant to the problem. Theoretically, the state Q-learning

information must exhibit the Markov property, in that this

information, together with a description of the action being Background

taken, is all that is needed to predict the effect on the envi-
ronment. The agent does not need to know the history of its

previous states or actions. In practice, it is assumed that the ; ‘
process is Markovian, although this may not be strictly true. IMProvements have been the primary tools used to address in-

Based on its perception of the statethe agent selects an creasipg congestion. due to grovyth in roagl traffic volumes. How-
actiona, from the set of possible actions. This decision de- €Ver: increasingly tight constraints on flnanc_lal resources and
pends on the relative value of the various possible actions, or Physical space, as well as environmental considerations, have re-
more precisely on the estimated Q-val@s, , which reflect gwre@ con5|derat|qn o]‘ a wider range of options. Enhancing the
the value to the agent of undertaking actmmhile in state intelligence of trafﬂc S|gnal control systems is an approach that
s, resulting in a transition to stat&, and following a cur- ~ Nas shown potential to improve the efficiency of traffic flow. Off-
rently optimal policy(sequence of actionshereafter. At the  line signal coordination methods, such as the maximization of
outset, the agent does not have any values for the through-bandwidths using time-space diagrams and optimization
Q-estimates and must learn these by randomly exploring al- With the TRANSYT family of programs, are gradually giving way
ternative actions from each state. A gradual shift is effected in larger cities to real-time methods such as the split, cycle, offset
from exploration to exploitation of those state/action combi- Optimization techniqugSCOOT (Hunt et al. 1981; Bretherton
nations found to perform well. 1996; Bretherton et al. 1998Research is continuing into traffic
As a result of taking actioa in states, the agent receives a  signal control systems that adapt to changing traffic conditions
reinforcement or reward, , , which depends upon the effect ~(Gartner and Al-Malik 1996; Yagar and Dion 1996; Spall and
of this action on the agent’s environment. There may be a Chin 1997; Sadek et al. 1988

delay between the time of the action and the receipt of the  Severe traffic congestion, both recurring and nonrecurring,
reward. The objective of the agent in seeking the optimum presents a difficult challenge to existing control methodologies,
policy is to maximize the accumulated rewdmat minimize particularly in the case of two-dimensional road networks. Such
the accumulated penajtpver time. A discount rate may be congestion is often experienced in conjunction with busy urban
used to bound the reward, particularly in the case of continu- cores and, on a more localized basis, in association with major
ous episodes. The discount rate reflects the higher value ofsports and entertainment events, major accidents or other inci-
short-term future rewards relative to those in the longer term. dents, and road construction and maintenance. There is an appar-

Until relatively recently, capital improvements, such as building
new roads or adding traffic lanes, and a variety of operational
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ent need to continue development of traffic signal control tech- eters of the controller remain unchanged. On the other hand, an
nigues to more effectively address these situations and it is to thisessential feature of adaptive algorithms is their ability to adjust
niche that the research described in the following case study istheir internal logic and parameters in response to major changes
directed. in the environment—changes that may make the knowledge base
Recent research literature includes three related efforts wherein a nonadaptive controller obsolete. One of the advantages of
reinforcement learning or related dynamic programming algo- reinforcement learning is that such algorithms are truly adaptive,
rithms were applied to the problem of traffic signal control. Sen in the sense that they are capable of responding to not only dy-
and Head(1997 utilized dynamic programming to develop a namic sensory inputs from the environment, but also a dynami-
phasing plan for each cycle based on short-term traffic predic- cally changing environment, through ongoing learning and adap-
tions. However, their approach lacks the ability to learn from tation. Since the one-step Q-learning algorithm updates the
experience and requires a traffic prediction model. Th¢987) Q-estimates at short intervals in conjunction with each action, it is
used reinforcement learning to minimize the time required to dis- also readily adaptable to on-line, real-time learning. Furthermore,
charge a fixed volume of traffic through a road network, but his Q-learning is an off-policy algorithm, in the sense that it is gain-
approach does not appear to be directly applicable to real-timeing useful experience even while exploring actions that may later
traffic signal control. Bingham(1998 applied reinforcement  turn out to be nonoptimal.
learning in the context of a neuro-fuzzy approach to traffic signal
control, but met with limited success due to the insensitivity of
the approach, limited exploration in what is a stochastic environ-

ment, and an off-line approach to value updating. The initial test application of Q-learning to the problem of traffic
signal control involved a single, isolated intersection. This simple
example was used to gain experience with this method in the
stochastic traffic environment and to establish useful ranges for
In comparison to other state-of-the-art techniques used for traffic the various parameters involved. Application of Q-learning in a
signal control, and many other dynamic programming and ma- multiagent context to a linear system of traffic signals is now
chine learning approaches, Q-learning offers some potentially sig-under way, and this will be followed by extension to a two-
nificant advantages, as discussed next. dimensional road network and signal system. The isolated signal
Q-learning does not require a prespecified model of the envi- and linear system implementations involve two-phase operation
ronment on which to base action selection. Instead, relationshipswithout turning flows. The network implementation will consider
between states, actions, and rewards are learned through dynamitirning movements and more flexible phasing arrangements. The
interaction with the environment. By way of contrast, existing following discussion outlines the essential elements of the iso-
traffic signal control methods usually require prespecified models lated signal case study and identifies modifications being tested in
of traffic flow to generate short-term predictions of traffic condi- the linear, multiagent application as a result of insights gained
tions or to assess the impacts of possible control decisions. If athrough the initial application.
single, general model is used, it is possible and even likely that
conditions around individual intersections will vary from the con- Description of Test-beds
ditions upon which the model was based. The isolated traffic signal test-bed consisted of a simulated two-
Another benefit of Q-learning, and reinforcement learning in phase signal controlling the intersection of two two-lane roads.
general, is that supervision of the learning process is not required.Vehicle arrivals were generated using individual Poisson pro-
Supervisednachine-learning algorithms require, for training pur- cesses with predefined average arrival rates on each of the four
poses, a large number of examples, consisting of sets of inputsapproaches. The average rates could be varied over time to rep-
and associated outcomes, which adequately cover the range ofesent different peak-period traffic profiles ovee th h simulated
environmental conditions expected on deployment. They involve episodes. In practice, the agent would operate continuously.
supervision in the sense that the appropriate outcome is provided In the case of the linear signal system, autonomous Q-learning
for each combination of inputs so that any inherent relationships agents, each controlling a single intersection with two-phase con-
can be learned. The machine learning methods, such as artificiatrol similar to that used in the isolated signal case, comprise the
neural networks, that have been the most widely studied and ap-test-bed. Individual Poisson processes are used to generate ve-
plied to transportation systems to date, typically involve super- hicle arrivals on each approach to the system. Traffic movement
vised learning. An example is the work on incident detection by within the system is simulated at a microscopic level. Each road
Abdulhai and Ritchig€1999a, b. In the case of Q-learning, which  link is divided into blocks; vehicles advance one block per time
is unsupervisedthe outcome associated with taking a particular step, provided the downstream block is not occupied. In cases
action in any state encountered is learned through dynamic trial-where there is insufficient space on the downstream link to exit an
and-error exploration of alternative actions and observation of the intersection, vehicles may enter the intersection probabilistically
relative outcomes. Rather than being presented with a large set ofand be trapped there until there is an opportunity to move ahead.
training examples, the generation of which is a challenging task in This may block following and crossing flows, and allows heavily
many cases, even for a domain expert, a Q-learning agent essenzongested traffic conditions to be simulated more realistically.
tially generates its own training experiences from its environment.
The learning process can be initiated on a simulator, with refine- State, Action, and Reward Definitions
ment and optimization for the intended environment occurring In the case of the isolated intersection, the state information avail-
after deployment. able to the agent included the queue lengths on the four ap-
It is important to note that not aleal-timealgorithms are truly proaches and the elapsed phase time. The multiagent situation
adaptive The two terms are often used interchangeably and pos- permits additional state information, since communication be-
sibly confused. Real-time algorithms are those able to respond totween agents extends the effective field of view of individual
sensory inputs in real time, although the internal logic and param- agents. In addition to local queue lengths, various combinations

Key Elements of Case-study Implementation

Advantages of Q-learning for Traffic Signal Control

JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / MAY/JUNE 2003 / 281



of upstream and downstream queue lengths and the offset of sigsection could be used in place of, or in combination with, delay.
nal changes controlling upstream and downstream movements ar®elay (or throughput on main roads could be weighted more
being evaluated as state elements. Since the addition of elementbeavily than that on lesser streets. Vehicle emissions or fuel con-
to the state definition dramatically increases the size of the state-sumption could also be incorporated, given suitable methods for
space, a balance has to be sought between the benefit of thigsheir estimation.
information and its impact on problem tractability. Sensing of
queue lengths would be most effectively achieved using video Exploration Policies
imaging technology in combination with artificial neural network Convergence of a Q-learning agent on a suitable Q-function, par-
or other pattern recognition techniques. ticularly where the process being controlled is stochastic, requires

The isolated signal agent was operated with a fixed cycle adequate exploration to ensure that all areas of interest across the
length as context. Each second, between a point 10 s into thestate space are visited sufficiently often. Limiting attention too
cycle and a point 10 s from the end of the cycle, arbitrary limits soon to promising early results may mean that the optimum
fixed to ensure minimum practical phase lengths, the agent se-policy is not discovered. The single agent test-bed was used to
lected an action—either remain with the current signal indication test several exploration policies. Asnigreedy policy was tested,
or change it. Considering the potential need to transmit, receive,where thebestaction is exploited with probabilitg and an ex-
and process communicated information, 1-s intervals betweenploratory action is chosen randomly with probability-¢. A
action-selection decisions were not considered to be sufficiently range of values foe was evaluated, and a value of 0.9 was found
flexible in the case of the multiagent system. In this case, actionto yield good results. A softmax exploration policy was also
selection consists of a decision, made at the time of the previoustested, where the probability of choosing an action was propor-
phase change, as to when to make the next phase change. Ttonal to the Q-estimate or value for that action given the current
provide additional flexibility, cycle lengths are not fixed in this state. Good results were achieved where the probability of choos-
case, but minimum and maximum limits are placed on phase ing the best action waannealed starting with random explora-
lengths, as before, to ensure practicality. In the case where pro-tion and increasing to the point where the best action was chosen
jected phase-change times at adjacent signals are included as statith a probability of 0.9, provided that state had been visited at
elements, the agents are provided with an opportunity to respondleast 35-50 times. Both techniques required that the definition of
to this information. At the time of a phase change, and decision random exploration be modified to avoid exploratory change ac-
on the time of the subsequent change, by any individual agent, thetions being implemented consistently within the first few seconds
other agents, in order of adjacency, are provided with an oppor-of the phase. With the change in the action-space for the multi-
tunity to review and adjust their currently projected change times agent test-bed, the standard softmax procedure is being used, al-
if the increase in benefit would exceed a minimum threshold. though further testing is necessary to ensure that the shift from
Where these review points are insufficiently close in time, inter- exploration to exploitation is sufficiently gradual so as not to
mediate reviews can be scheduled to allow any significant inhibit convergence.
changes in state to be considered as they occur. This review pro-
cess is repeated, as required and as time permits, in an attempt t&unction Approximation and Generalization
reach equilibrium. In both the single and multiagent settings, it is In both the single-agent and multiagent test-beds, the Cerebellar
possible to constrain phase lengths so that they do not vary byModel Articulation Controller(CMAC), as pioneered by Albus
more than a prespecified time from the previous phase length.(1975a, b, is used for storage and generalization of the
This may be seen as desirable to limit variability in successive Q-estimates. The CMAC is conceptually similar to an artificial
cycles, although some degradation of performance is likely. neural network, although the implementation used in this case, as

The definition of rewardactually a penalty in this capés described by Smith(1998, operates more like a sophisticated
relatively straightforward in the single-agent case, being the total look-up table. The CMAC fulfills a function approximation and
delay incurred between successive decision points by vehicles ingeneralization role by allowing Q-estimates for any given state-
the queues of the four approaches. The delay in each 1-s stepaction pair to influence those of nearby state-action pairs. This
being directly proportional to the queue length, was modified effectively smooths the decision hypersurface and enables
using a power function to encourage approximate balancing of Q-estimates to be derived for state-action pairs not yet visited, but
queue lengths. Otherwise, the agent was found to be indifferentsimilar to pairs that have been visited. The actual storage of
between situations involving very long and very short queues and Q-estimates was accomplished using hash tables. This minimizes
situations involving equal-length queues, both with the same av- memory requirements, since the high-dimensional arrays re-
erage queue length and therefore delay. In the multiagent case, @uired, one dimension for each element of the state-space, are
key issue is the extent to whidlobal rewards(or penalties are typically sparsely populated.
necessary to promote cooperation among the agents. It is hypoth- In the case of the isolated intersection, two CMACs were
esized that interacting agents must respond to a reward structuraised—one for theehangeaction and one for thelont-change
that incorporates not onljocal rewards, as in the single-agent action. Testing showed that 11 association units or layers in the
case, but also global rewards to avoid agents acting solely on theCMAC, in combination with a resolution of 50%mnapping two
basis of self-interest and compromising overall effectiveness andadjacent queue lengths—for example, 23 vehicles and 24
efficiency. In addition to the local reward used by the isolated vehicles—into the same Q-estimatgielded good results without
agent, alternative global reward formulations are being investi- requiring excessive memory for the storage of the Q-estimates.
gated for the multiagent case, including delay and the incidence Despite the fact that the CMAC implies nonlinear function ap-
of intersection blockage along the main streets and across theproximation, possibly problematic in the case of Q-learning in a
network. Weighting of the global rewards relative to local rewards stochastic environment, lack of convergence did not appear to be
is also being evaluated. an issue. Various values for the training ratg, were tested, and

It is possible to define rewards or penalties related to other the best results were achieved wheyy, was gradually decreased
objectives or priorities. For example, the throughput of the inter- in inverse proportion to the number of visits to that particular
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states and actiona. The multiagent structure is designed so that 175
each agent, and therefore each intersection, employs two \
CMACs—one for changes from a green to a red indication, and
one for changes from red to green. Theoretically, all agents could
share a single pair of CMACs, implying faster training. However,
this limits effective learning of optimal policies in cases where
local environmentgroad section lengths, road configuration, in-
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is the role of communication between agents. While it is hypoth-
esized that communication should expand the agents’ perceptua
horizons and their ability to cooperate toward a globally optimal
policy, it is also recognized that excessive information can in-
crease the dimensionality of the problem, increase the computa-
tional burden, and reduce robustness should the communication
system malfunction. In this research, the benefits of various levelsie pretimed signal-phasing plan used as a baseline for compari-
of communication are being compared to each other and to thegon ytilized constant phase times based on the critical peak-hour
baseline case without communication, where each agent has onlyo rates by direction.
local sensory inputs and acts independently. . _ Where traffic flow rates were uniform across the approaches at
There are several key opportunities to incorporate information any given point in time, or where there was a constant ratio be-
communicated between agents. The first involves the state of theyyeen the main and side-street flow rates, the Q-learning agent
environment where, as noted previously, tests are being con-performed generally on a par with, or slightly better than, the
ducted on alternative state definitions that include different forms pretimed signal controller. With the uniform flow rates, the differ-
of communicated information. The communication of intended gnces in mean delay per vehicle between pretimed operation and
actions in the form of projected phase-change times provides anihe results obtained by the Q-learning agent were not statistically
opportunity for cooperative, real-time review of proposed actions gjgnjficant beyond 50 training episodes. In the case of constant-
as the environment changes. Another application of communi- y4tig flow rates, the differences in mean delay per vehicle were
cated information is in the reward structure where, as discussedstatistically significant in favor of the Q-learning agent between
earlier, the inclusion of weighted global rewards may assist in 300 and 400 training episodes. The similarity in performance of
convergence toward a policy that is optimal, considering the en- ¢ pretimed and Q-learning approaches does not argue against
tire network. In the multiagent test-bed, it is likely that the actions  the effectiveness of the latter, since these conditions are amenable
of one agent in the system have an impact on not only adjacentys pretimed signal control. That the Q-learning agent was able to
agents, but others as well. If an agent allows a local queue tooytperform the pretimed controller at all under these conditions
build up so that it extends through upstream intersections, bothyas due to its ability to adapt to minor random fluctuations in
following and cross-street traffic may be blocked. flow. The initially higher delays for the Q-learning agent reflect
the early stages of training, before the Q-function has stabilized.
Starting with zeroed initial Q-estimates, the Q-learning agent was
able to achieve effective and reasonably stable performance
The following discussion presents selected results obtained fromwithin 200—400 training episodes. Where the traffic flows were
the isolated signal test-bed. In this case, performance was com-imore variable, the Q-learning agent produced delays that were
pared with that of a commonly used pretimed signal controller. only 38—44% of those obtained using pretimed signal control and
Comparison with semi- or fully actuated controllers might be con- outperformed the pretimed controller over virtually 100% of the
sidered a more appropriate test of performance, but, in the heavilytest episodes.
congested conditions that are the subject of this research, these Tests were also conducted with smoothed signal changes,
typically default to what is essentially pretimed control. At the where the difference between subsequent phase lengths was lim-
time of writing, testing with the multiagent test-bed had not pro- ited. When the maximum difference was set to 6 s, the delay
gressed to the point where useful conclusions could be drawn.understandably increased, typically by 5—-10%. The ability of the
These will be reported on at a later time. In the multiagent case, agent to generalize to different cycle lengths was also evaluated.
comparisons will be drawn with other commonly used signal sys- The average delays associated with doubling the cycle length
tem control methodologies such as through-bandwidth maximiza- were significantly higher, although this is an extreme case not
tion and TRANSYT(off-line) and SCOOT(on-line). usually contemplated in practice. This result, in part, motivated
Tests were conducted using three different traffic profiles to the use of a flexible cycle length for the multiagent test-bed.
evaluate the performance of the Q-learning agent under varying
conditions. Fig. 3 summarizes the results of these tests. The
graphs in Fig. 3 reflect the average vehicular delay across indi- Implementation Issues
vidual sets of 50 test episodes, typically conducted after each of
10, 25, 50, 100, 150, 200, 250, and 500 training episodes. Eachimplementation of reinforcement-learning-based signal control
training and testing episode was equivalent to a 2-h peak periodsystems is contemplated primarily for the multiagent, signal net-
involving 144 signal cycles. In accordance with typical practice, work situation, as it is in this case that the benefits of learning

|:ig. 3. Isolated traffic signal: Average delay per vehicle ratio
(Q-learning/pretimed
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should be most apparent and useful. Several key deployment isteinforcement learning to the problem of traffic signal control,
sues need to be addressed, as discussed next. with particular emphasis on heavily congested conditions in a

It is envisaged that the agents would be pretrained on a simu-two-dimensional road network. Preliminary results from the ap-
lator prior to actual deployment. Tests to date with the isolated plication of Q-learning to an isolated, two-phase traffic signal are
signal test-bed have shown that pretraining requirements are noencouraging. The Q-learning agent performed on a par with pre-
onerous. Analogous testing with the multiagent test-bed is re- timed signals under traffic conditions amenable to pretimed con-
quired to determine pretraining requirements and to ascertain howtrol, involving constant or constant-ratio flow rates. Under more
close to expected operational conditions the simulated pretrainingvariable traffic conditions, the Q-learning agent demonstrated
scenarios would have to be to ensure reasonable generalization tonarked superiority due to its ability to adapt to changing circum-
the expected range of operating conditions upon deployment.stances.
Once deployed, the agents would be programmed to continue Research is currently under way to extend the reinforcement-
their training to refine the Q-estimates based on actual environ-learning approach to a linear signal system and will be reported
mental and operating conditions. Exploration would be necessaryon in the near future. Subsequent phases of this research effort
in the initial stages of deployment, but this exploration should be will involve extension to control of a two-dimensional system of
incremental and should not produce control decisions that appeatraffic signals and the integration of traffic signal control based on
to drivers to be obviously inappropriate to the situation. A “con- Q-learning with dynamic route guidance. Comparison of the
tinuing education” strategy should also be developed that will Q-learning approach to traffic signal control with existing state-
enable the agent to assess its performance on an ongoing basis iaf-the-art methods such as SCOOT will also be pursued.
light of possibly changing conditions and determine when and
how much additional on-line training may be required.

A sensory subsystem is needed to provide the required inputsAcknowledgments
to the agents. This may involve adaptation of existing induction
loop technology, although a video imaging system would likely The second writer wishes to acknowledge the financial assistance
be more effective. A contingency plan would also be required to Provided by the Natural Science and Engineering Research Coun-
deal with a potential loss of communications. Evaluation of simu- Cil of Canada and the University of Toronto.
lated agent performance using only local state inputs, but in a
multiagent context, is planned to provide insights into a possible
strategy for this scenario. References
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