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Reinforcement Learning for True Adaptive Traffic Signal
Control

Baher Abdulhai1; Rob Pringle2; and Grigoris J. Karakoulas3

Abstract: The ability to exertreal-time, adaptivecontrol of transportation processes is the core of many intelligent transport
systems decision support tools. Reinforcement learning, an artificial intelligence approach undergoing development in the
learning community, offers key advantages in this regard. The ability of a control agent tolearn relationships between control actions an
their effect on the environment while pursuing a goal is a distinct improvement over prespecified models of the environment. Pre
models are a prerequisite of conventional control methods and their accuracy limits the performance of control agents. This pape
an introduction to Q-learning, a simple yet powerful reinforcement learning algorithm, and presents a case study involving appli
traffic signal control. Encouraging results of the application to an isolated traffic signal, particularly under variable traffic conditio
presented. A broader research effort is outlined, including extension to linear and networked signal systems and integration with
route guidance. The research objective involves optimal control of heavily congested traffic across a two-dimensional road ne
challenging task for conventional traffic signal control methodologies.
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Introduction

The ability to exert real-time, adaptive control over a transport
tion process is potentially useful for a variety of intelligent tran
portation systems services, including control of a system of traf
signals, control of the dispatching of paratransit vehicles, a
control of the changeable message displays or other cues
dynamic route guidance system, to name a few. In each case,
controlling actions should respond to actual environmen
conditions—vehicular demand in the case of a signal system,
demand for multiple paratransit trip origins and destinations,
the road network topology and traffic conditions in the case
dynamic route guidance. Even more valuable is the ability
control in accordance with an optimal strategy defined in terms
one or more performance objectives. For example, one mi
wish to have a signal control strategy that minimizes delay,
paratransit dispatching system that minimizes wait time and v
hicle kilometers traveled, or a dynamic route guidance syste
that minimizes travel time.
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A key limitation of conventional control systems is a require
ment for one or more prespecified models of the environme
The purpose of these might be to convert sensory inputs int
useful picture of current or impending conditions or provide a
assessment of the probable impacts of alternative control acti
in a given situation. Such models require domain expertise
construct. Furthermore, they must often be sufficiently general
cover a variety of conditions, as it is usually impractical to pro
vide separate models to address each potential situation. For
ample, some state-of-the-art traffic signal control systems rely
a platoon-dispersion model to predict the arrival pattern of v
hicles at a downstream signal based on departures from an
stream signal. A generalized model designed to represent all r
links cannot possibly reflect the impacts of the different comb
nations of side streets and driveways generating and absorb
traffic between the upstream and downstream signals.

What if a controlling agent could directlylearn the various
relationships inherent in its world from its experience with diffe
ent situations in that world? Not only would the need for mod
prespecification be obviated or at least minimized, but such
agent could effectively tailor its control actions to specific situ
tions based on its past experience with the same or similar sit
tions. The machine-learning research community, related to
artificial intelligence community, provides us with a variety o
methods that might be adapted to transportation control proble
One of these, particularly useful due to its conceptual simplici
yet impressive in its potential, is reinforcement learning@see Sut-
ton and Barto~1998! or Kaelbling et al.~1996! for comprehensive
overviews, or Bertsekas and Tsitsiklis~1996! for a more rigorous
treatment#.

This paper provides a brief introduction to the concept of r
inforcement learning. As a case study, reinforcement learning
applied to the case of an isolated traffic signal with encouragi
results. This is the first stage in a research program to develo
signal system control methodology, based on reinforcement lea

s
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Fig. 1. Illustration of reinforcement learning:~a! Gridworld; ~b! first episode;~c! second episode;~d! selected final Q-estimates;~e! one possible
optimal policy
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couraging the robot to learn the shortest possible path to Doo
For this example, assume that the discount rate is 0.9.

Initially, all potential moves from any given grid square, e
cept that involving passing through Door B from the square
front of it, have a value of zero, in the sense that no rew
appears to be gained by implementing them. On its first journ
therefore, the robot explores in a random fashion, possibly
lowing the path shown in Fig. 1~b!, until it eventually passes
through Door B. In doing so, it gains a reward of 100 units a
remains there, ending the current episode. The value assign
the move preceding the move through Door B is updated us
the reward of 100 units, factored by the discount rate of 0.9, s
the reward was gained one time step into the future, to give a
value of 90 units. On its second journey from Door A, the rob
explores until it reaches a square adjacent to that in front of D
B. As before, the preceding move is assigned a value of 90 u
factored by the discount rate of 0.9, to give a net value of
units, as shown in Fig. 1~c!. Each journey or episode thereaft
may result in another move being assigned a value. At so
point, the robot might find itself confronted with a choice betwe
making a move with zero value and making one with some p
viously assigned positive value. In this situation, the robot m
choose whether or not to explore the move with a current valu
zero, on the chance that it might be better than exploiting
current knowledge by making the move that it knows has a p
tive value.

After a sufficient number of episodes, each move from a
given square will have been assigned a value. In most prac
problems, particularly in stochastic domains, many episodes
required before these values achieve useful convergence. Fig~d!
shows a selection of these values, each of which represent
sum of discounted future rewards if one follows an optimal p
from that particular grid square to Door B. The robot has the
fore learned an estimate of the value functionQ. At this point, the
ing, which could be integrated with dynamic route guidance
provide effective traffic control in highly congested conditions
Effective traffic control in the face of severe congestion on
two-dimensional road network is a challenging task for existin
signal control methodologies.

Reinforcement Learning: Brief Primer

Illustrative Example

In its simplest terms, reinforcement learning involves an age
that wishes to learn how to achieve a goal. It does so by intera
ing dynamically with its environment, trying different actions in
different situations in order to determine the best action or s
quence of actions to achieve its goal from any possible giv
situation. Feedback signals provided by the environment allo
the agent to determine to what extent an action actually contr
uted to the achievement of the desired goal.

To illustrate the concept of reinforcement learning, consid
the following simplified example of a mobile robot navigating
within the gridworld shown in Fig. 1~a!. This is actually an illus-
tration of Q-learning, developed by Watkins~1989; Watkins and
Dayan 1992!, and is one of a number of possible reinforcemen
learning algorithms and the one that is used in the case stu
presented later in this paper. Imagine that the robot starts beh
Door A and that its goal is to pass through Door B, for which
gains a reward of 100 units. No other actions are rewarded. On
it passes through Door B, it remains there~perhaps waiting for a
further task! and gains no further rewards. At each time step, th
robot can move to an adjacent grid square but cannot move
agonally. Let us also define a discount rate that has the effect
reducing the value of future rewards relative to more immedia
rewards. In this case, the discount rate also has the effect of
TRANSPORTATION ENGINEERING © ASCE / MAY/JUNE 2003 / 279
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Fig. 2. Key elements of Q-learning
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4. The combination of states, actiona, and rewardr s,a is then
used to update the previous estimate of the Q-valueQt21(s,a)
recursively according to the following training rule:

d5as,a$r s,a1g t•MAX @Qt21~s8,a8!#2Qt21~s,a!% (1)

whered5 increment to be added to the previously estimate
Q-value,Qt21(s,a) , to getQt(s,a) ; as,a5training rate in the
interval @0,1#; r s,a5reward received for taking actiona,
while in states; g t5discount rate in the interval@0,1#, ap-
plied to future rewards;MAX @Qt21(s8,a8)#5previously esti-
mated Q-value following the optimum policy starting in stat
s8; andQt21(s,a)5previous estimate of the Q-value of taking
actiona while in states.
This particular training rule is relevant to stochastic environ
ments such as the traffic environment in the case study o
lined in the next section. Decreasing the training rate ov
time is one of the conditions necessary for convergence
the Q-function in a stochastic environment. The other cond
tion requires that each state-action combination be visit
infinitely often, although in most practical problems, the po
tion of the state-space that is of primary interest will b
visited often but not infinitely often. If penalties are receive
rather than rewards, theMIN function is used in place of
MAX .

5. The updated estimate of the Q-value is then stored for la
reuse. The Q-values may be stored in an unaltered form in
look-up table, although this requires a significant amount
memory. They may also be used as inputs to a function a
proximation process designed to generalize the Q-functi
so that Q-value estimates may be obtained for state/act
combinations not yet visited but similar to combinations tha
have been visited.

Adaptive Traffic Signal Control—Case Study Using
Q-learning

Background

Until relatively recently, capital improvements, such as buildin
new roads or adding traffic lanes, and a variety of operation
improvements have been the primary tools used to address
creasing congestion due to growth in road traffic volumes. How
ever, increasingly tight constraints on financial resources a
physical space, as well as environmental considerations, have
quired consideration of a wider range of options. Enhancing t
intelligence of traffic signal control systems is an approach th
has shown potential to improve the efficiency of traffic flow. Off
line signal coordination methods, such as the maximization
through-bandwidths using time-space diagrams and optimizat
with the TRANSYT family of programs, are gradually giving way
in larger cities to real-time methods such as the split, cycle, offs
optimization technique~SCOOT! ~Hunt et al. 1981; Bretherton
1996; Bretherton et al. 1998!. Research is continuing into traffic
signal control systems that adapt to changing traffic conditio
~Gartner and Al-Malik 1996; Yagar and Dion 1996; Spall an
Chin 1997; Sadek et al. 1998!.

Severe traffic congestion, both recurring and nonrecurrin
presents a difficult challenge to existing control methodologie
particularly in the case of two-dimensional road networks. Su
congestion is often experienced in conjunction with busy urb
cores and, on a more localized basis, in association with ma
sports and entertainment events, major accidents or other in
dents, and road construction and maintenance. There is an ap
robot can implement an optimal sequence of actions, orpolicy, by
greedily taking the action with the highest value, regardless
where it starts from or finds itself, until it reaches Door B. Fig
1~e! shows one of several possible optimal policies.

More Precise Definition of Q-learning

Building on the example described in the preceding section, let
now formulate a more precise, although still basic, definition o
Q-learning. Consider the system shown in Fig. 2, which show
the key elements of Q-learning.
1. The agent is the entity responsible for interpreting senso

inputs from the environment, choosing actions on the bas
of the fused inputs, and learning on the basis of the effects
its actions on the environment. At timet, the Q-learning
agent receives from the environment a signal describing
current states. The state is a group of key variables tha
together describe those current characteristics of the envir
ment that are relevant to the problem. Theoretically, the sta
information must exhibit the Markov property, in that this
information, together with a description of the action bein
taken, is all that is needed to predict the effect on the env
ronment. The agent does not need to know the history of
previous states or actions. In practice, it is assumed that
process is Markovian, although this may not be strictly tru

2. Based on its perception of the states, the agent selects an
actiona, from the set of possible actions. This decision de
pends on the relative value of the various possible actions,
more precisely on the estimated Q-valuesQs,a , which reflect
the value to the agent of undertaking actiona while in state
s, resulting in a transition to states8, and following a cur-
rently optimal policy~sequence of actions! thereafter. At the
outset, the agent does not have any values for t
Q-estimates and must learn these by randomly exploring
ternative actions from each state. A gradual shift is effecte
from exploration to exploitation of those state/action comb
nations found to perform well.

3. As a result of taking actiona in states, the agent receives a
reinforcement or rewardr s,a , which depends upon the effect
of this action on the agent’s environment. There may be
delay between the time of the action and the receipt of t
reward. The objective of the agent in seeking the optimu
policy is to maximize the accumulated reward~or minimize
the accumulated penalty! over time. A discount rate may be
used to bound the reward, particularly in the case of contin
ous episodes. The discount rate reflects the higher value
short-term future rewards relative to those in the longer term
NE 2003
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ent need to continue development of traffic signal control te
niques to more effectively address these situations and it is to
niche that the research described in the following case stud
directed.

Recent research literature includes three related efforts w
reinforcement learning or related dynamic programming a
rithms were applied to the problem of traffic signal control. S
and Head~1997! utilized dynamic programming to develop
phasing plan for each cycle based on short-term traffic pre
tions. However, their approach lacks the ability to learn fr
experience and requires a traffic prediction model. Thorpe~1997!
used reinforcement learning to minimize the time required to
charge a fixed volume of traffic through a road network, but
approach does not appear to be directly applicable to real-
traffic signal control. Bingham~1998! applied reinforcemen
learning in the context of a neuro-fuzzy approach to traffic sig
control, but met with limited success due to the insensitivity
the approach, limited exploration in what is a stochastic envi
ment, and an off-line approach to value updating.

Advantages of Q-learning for Traffic Signal Control

In comparison to other state-of-the-art techniques used for tr
signal control, and many other dynamic programming and
chine learning approaches, Q-learning offers some potentially
nificant advantages, as discussed next.

Q-learning does not require a prespecified model of the e
ronment on which to base action selection. Instead, relations
between states, actions, and rewards are learned through dy
interaction with the environment. By way of contrast, exist
traffic signal control methods usually require prespecified mo
of traffic flow to generate short-term predictions of traffic con
tions or to assess the impacts of possible control decisions
single, general model is used, it is possible and even likely
conditions around individual intersections will vary from the co
ditions upon which the model was based.

Another benefit of Q-learning, and reinforcement learning
general, is that supervision of the learning process is not requ
Supervisedmachine-learning algorithms require, for training p
poses, a large number of examples, consisting of sets of in
and associated outcomes, which adequately cover the ran
environmental conditions expected on deployment. They inv
supervision in the sense that the appropriate outcome is pro
for each combination of inputs so that any inherent relations
can be learned. The machine learning methods, such as art
neural networks, that have been the most widely studied and
plied to transportation systems to date, typically involve su
vised learning. An example is the work on incident detection
Abdulhai and Ritchie~1999a, b!. In the case of Q-learning, whic
is unsupervised, the outcome associated with taking a particu
action in any state encountered is learned through dynamic
and-error exploration of alternative actions and observation o
relative outcomes. Rather than being presented with a large s
training examples, the generation of which is a challenging tas
many cases, even for a domain expert, a Q-learning agent e
tially generates its own training experiences from its environm
The learning process can be initiated on a simulator, with re
ment and optimization for the intended environment occur
after deployment.

It is important to note that not allreal-timealgorithms are truly
adaptive. The two terms are often used interchangeably and
sibly confused. Real-time algorithms are those able to respo
sensory inputs in real time, although the internal logic and par
JOURNAL OF
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eters of the controller remain unchanged. On the other hand
essential feature of adaptive algorithms is their ability to adj
their internal logic and parameters in response to major chan
in the environment—changes that may make the knowledge
in a nonadaptive controller obsolete. One of the advantage
reinforcement learning is that such algorithms are truly adapt
in the sense that they are capable of responding to not only
namic sensory inputs from the environment, but also a dyna
cally changing environment, through ongoing learning and ad
tation. Since the one-step Q-learning algorithm updates
Q-estimates at short intervals in conjunction with each action,
also readily adaptable to on-line, real-time learning. Furtherm
Q-learning is an off-policy algorithm, in the sense that it is ga
ing useful experience even while exploring actions that may la
turn out to be nonoptimal.

Key Elements of Case-study Implementation

The initial test application of Q-learning to the problem of traf
signal control involved a single, isolated intersection. This sim
example was used to gain experience with this method in
stochastic traffic environment and to establish useful ranges
the various parameters involved. Application of Q-learning in
multiagent context to a linear system of traffic signals is n
under way, and this will be followed by extension to a tw
dimensional road network and signal system. The isolated si
and linear system implementations involve two-phase opera
without turning flows. The network implementation will consid
turning movements and more flexible phasing arrangements.
following discussion outlines the essential elements of the
lated signal case study and identifies modifications being teste
the linear, multiagent application as a result of insights gai
through the initial application.

Description of Test-beds
The isolated traffic signal test-bed consisted of a simulated t
phase signal controlling the intersection of two two-lane roa
Vehicle arrivals were generated using individual Poisson p
cesses with predefined average arrival rates on each of the
approaches. The average rates could be varied over time to
resent different peak-period traffic profiles over the 2 h simulated
episodes. In practice, the agent would operate continuously.

In the case of the linear signal system, autonomous Q-lear
agents, each controlling a single intersection with two-phase c
trol similar to that used in the isolated signal case, comprise
test-bed. Individual Poisson processes are used to generat
hicle arrivals on each approach to the system. Traffic movem
within the system is simulated at a microscopic level. Each r
link is divided into blocks; vehicles advance one block per tim
step, provided the downstream block is not occupied. In ca
where there is insufficient space on the downstream link to exi
intersection, vehicles may enter the intersection probabilistic
and be trapped there until there is an opportunity to move ah
This may block following and crossing flows, and allows heav
congested traffic conditions to be simulated more realistically

State, Action, and Reward Definitions
In the case of the isolated intersection, the state information a
able to the agent included the queue lengths on the four
proaches and the elapsed phase time. The multiagent situ
permits additional state information, since communication
tween agents extends the effective field of view of individu
agents. In addition to local queue lengths, various combinat
TRANSPORTATION ENGINEERING © ASCE / MAY/JUNE 2003 / 281
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of upstream and downstream queue lengths and the offset of
nal changes controlling upstream and downstream movement
being evaluated as state elements. Since the addition of elem
to the state definition dramatically increases the size of the st
space, a balance has to be sought between the benefit of
information and its impact on problem tractability. Sensing
queue lengths would be most effectively achieved using vid
imaging technology in combination with artificial neural netwo
or other pattern recognition techniques.

The isolated signal agent was operated with a fixed cy
length as context. Each second, between a point 10 s into
cycle and a point 10 s from the end of the cycle, arbitrary lim
fixed to ensure minimum practical phase lengths, the agent
lected an action—either remain with the current signal indicat
or change it. Considering the potential need to transmit, rece
and process communicated information, 1-s intervals betw
action-selection decisions were not considered to be sufficie
flexible in the case of the multiagent system. In this case, ac
selection consists of a decision, made at the time of the prev
phase change, as to when to make the next phase chang
provide additional flexibility, cycle lengths are not fixed in th
case, but minimum and maximum limits are placed on ph
lengths, as before, to ensure practicality. In the case where
jected phase-change times at adjacent signals are included as
elements, the agents are provided with an opportunity to resp
to this information. At the time of a phase change, and decis
on the time of the subsequent change, by any individual agent
other agents, in order of adjacency, are provided with an opp
tunity to review and adjust their currently projected change tim
if the increase in benefit would exceed a minimum thresho
Where these review points are insufficiently close in time, int
mediate reviews can be scheduled to allow any signific
changes in state to be considered as they occur. This review
cess is repeated, as required and as time permits, in an attem
reach equilibrium. In both the single and multiagent settings, i
possible to constrain phase lengths so that they do not vary
more than a prespecified time from the previous phase len
This may be seen as desirable to limit variability in success
cycles, although some degradation of performance is likely.

The definition of reward~actually a penalty in this case! is
relatively straightforward in the single-agent case, being the to
delay incurred between successive decision points by vehicle
the queues of the four approaches. The delay in each 1-s
being directly proportional to the queue length, was modifi
using a power function to encourage approximate balancing
queue lengths. Otherwise, the agent was found to be indiffe
between situations involving very long and very short queues
situations involving equal-length queues, both with the same
erage queue length and therefore delay. In the multiagent ca
key issue is the extent to whichglobal rewards~or penalties! are
necessary to promote cooperation among the agents. It is hyp
esized that interacting agents must respond to a reward struc
that incorporates not onlylocal rewards, as in the single-agen
case, but also global rewards to avoid agents acting solely on
basis of self-interest and compromising overall effectiveness
efficiency. In addition to the local reward used by the isolat
agent, alternative global reward formulations are being inve
gated for the multiagent case, including delay and the incide
of intersection blockage along the main streets and across
network. Weighting of the global rewards relative to local rewar
is also being evaluated.

It is possible to define rewards or penalties related to ot
objectives or priorities. For example, the throughput of the int
282 / JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / MAY/JU
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section could be used in place of, or in combination with, de
Delay ~or throughput! on main roads could be weighted mo
heavily than that on lesser streets. Vehicle emissions or fuel
sumption could also be incorporated, given suitable method
their estimation.

Exploration Policies
Convergence of a Q-learning agent on a suitable Q-function,
ticularly where the process being controlled is stochastic, req
adequate exploration to ensure that all areas of interest acro
state space are visited sufficiently often. Limiting attention
soon to promising early results may mean that the optim
policy is not discovered. The single agent test-bed was use
test several exploration policies. An«-greedy policy was tested
where thebestaction is exploited with probability« and an ex-
ploratory action is chosen randomly with probability12«. A
range of values for« was evaluated, and a value of 0.9 was fou
to yield good results. A softmax exploration policy was a
tested, where the probability of choosing an action was pro
tional to the Q-estimate or value for that action given the cur
state. Good results were achieved where the probability of ch
ing the best action wasannealed, starting with random explora
tion and increasing to the point where the best action was ch
with a probability of 0.9, provided that state had been visite
least 35–50 times. Both techniques required that the definitio
random exploration be modified to avoid exploratory change
tions being implemented consistently within the first few seco
of the phase. With the change in the action-space for the m
agent test-bed, the standard softmax procedure is being use
though further testing is necessary to ensure that the shift
exploration to exploitation is sufficiently gradual so as not
inhibit convergence.

Function Approximation and Generalization
In both the single-agent and multiagent test-beds, the Cereb
Model Articulation Controller~CMAC!, as pioneered by Albu
~1975a, b!, is used for storage and generalization of
Q-estimates. The CMAC is conceptually similar to an artific
neural network, although the implementation used in this cas
described by Smith~1998!, operates more like a sophisticat
look-up table. The CMAC fulfills a function approximation a
generalization role by allowing Q-estimates for any given st
action pair to influence those of nearby state-action pairs.
effectively smooths the decision hypersurface and ena
Q-estimates to be derived for state-action pairs not yet visited
similar to pairs that have been visited. The actual storag
Q-estimates was accomplished using hash tables. This minim
memory requirements, since the high-dimensional arrays
quired, one dimension for each element of the state-space
typically sparsely populated.

In the case of the isolated intersection, two CMACs w
used—one for thechangeaction and one for thedon’t-change
action. Testing showed that 11 association units or layers in
CMAC, in combination with a resolution of 50%~mapping two
adjacent queue lengths—for example, 23 vehicles and
vehicles—into the same Q-estimate!, yielded good results withou
requiring excessive memory for the storage of the Q-estim
Despite the fact that the CMAC implies nonlinear function
proximation, possibly problematic in the case of Q-learning
stochastic environment, lack of convergence did not appear
an issue. Various values for the training rateas,a were tested, an
the best results were achieved whenas,a was gradually decrease
in inverse proportion to the number of visits to that particu
NE 2003
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states and actiona. The multiagent structure is designed so tha
each agent, and therefore each intersection, employs t
CMACs—one for changes from a green to a red indication, a
one for changes from red to green. Theoretically, all agents co
share a single pair of CMACs, implying faster training. Howeve
this limits effective learning of optimal policies in cases wher
local environments~road section lengths, road configuration, in
tervening side streets or major generators, etc.! are dissimilar and
may result in oscillation of the Q-estimates and hindering of co
vergence.

Multiagent Architecture and Communication Strategy
One of the key issues being explored with the multiagent test-b
is the role of communication between agents. While it is hypot
esized that communication should expand the agents’ percep
horizons and their ability to cooperate toward a globally optim
policy, it is also recognized that excessive information can i
crease the dimensionality of the problem, increase the compu
tional burden, and reduce robustness should the communica
system malfunction. In this research, the benefits of various lev
of communication are being compared to each other and to
baseline case without communication, where each agent has o
local sensory inputs and acts independently.

There are several key opportunities to incorporate informati
communicated between agents. The first involves the state of
environment where, as noted previously, tests are being c
ducted on alternative state definitions that include different form
of communicated information. The communication of intende
actions in the form of projected phase-change times provides
opportunity for cooperative, real-time review of proposed action
as the environment changes. Another application of commu
cated information is in the reward structure where, as discuss
earlier, the inclusion of weighted global rewards may assist
convergence toward a policy that is optimal, considering the e
tire network. In the multiagent test-bed, it is likely that the action
of one agent in the system have an impact on not only adjac
agents, but others as well. If an agent allows a local queue
build up so that it extends through upstream intersections, bo
following and cross-street traffic may be blocked.

Preliminary Test Results

The following discussion presents selected results obtained fr
the isolated signal test-bed. In this case, performance was co
pared with that of a commonly used pretimed signal controlle
Comparison with semi- or fully actuated controllers might be con
sidered a more appropriate test of performance, but, in the hea
congested conditions that are the subject of this research, th
typically default to what is essentially pretimed control. At th
time of writing, testing with the multiagent test-bed had not pro
gressed to the point where useful conclusions could be draw
These will be reported on at a later time. In the multiagent cas
comparisons will be drawn with other commonly used signal sy
tem control methodologies such as through-bandwidth maximiz
tion and TRANSYT~off-line! and SCOOT~on-line!.

Tests were conducted using three different traffic profiles
evaluate the performance of the Q-learning agent under vary
conditions. Fig. 3 summarizes the results of these tests. T
graphs in Fig. 3 reflect the average vehicular delay across in
vidual sets of 50 test episodes, typically conducted after each
10, 25, 50, 100, 150, 200, 250, and 500 training episodes. Ea
training and testing episode was equivalent to a 2-h peak per
involving 144 signal cycles. In accordance with typical practic
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the pretimed signal-phasing plan used as a baseline for comp
son utilized constant phase times based on the critical peak-h
flow rates by direction.

Where traffic flow rates were uniform across the approaches
any given point in time, or where there was a constant ratio b
tween the main and side-street flow rates, the Q-learning ag
performed generally on a par with, or slightly better than, th
pretimed signal controller. With the uniform flow rates, the differ
ences in mean delay per vehicle between pretimed operation
the results obtained by the Q-learning agent were not statistica
significant beyond 50 training episodes. In the case of consta
ratio flow rates, the differences in mean delay per vehicle we
statistically significant in favor of the Q-learning agent betwee
300 and 400 training episodes. The similarity in performance
the pretimed and Q-learning approaches does not argue aga
the effectiveness of the latter, since these conditions are amena
to pretimed signal control. That the Q-learning agent was able
outperform the pretimed controller at all under these conditio
was due to its ability to adapt to minor random fluctuations
flow. The initially higher delays for the Q-learning agent reflec
the early stages of training, before the Q-function has stabilize
Starting with zeroed initial Q-estimates, the Q-learning agent w
able to achieve effective and reasonably stable performan
within 200–400 training episodes. Where the traffic flows we
more variable, the Q-learning agent produced delays that w
only 38–44% of those obtained using pretimed signal control a
outperformed the pretimed controller over virtually 100% of th
test episodes.

Tests were also conducted with smoothed signal chang
where the difference between subsequent phase lengths was
ited. When the maximum difference was set to 6 s, the del
understandably increased, typically by 5–10%. The ability of th
agent to generalize to different cycle lengths was also evaluat
The average delays associated with doubling the cycle len
were significantly higher, although this is an extreme case n
usually contemplated in practice. This result, in part, motivate
the use of a flexible cycle length for the multiagent test-bed.

Implementation Issues

Implementation of reinforcement-learning-based signal contr
systems is contemplated primarily for the multiagent, signal ne
work situation, as it is in this case that the benefits of learnin

Fig. 3. Isolated traffic signal: Average delay per vehicle rati
~Q-learning/pretimed!
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should be most apparent and useful. Several key deploymen
sues need to be addressed, as discussed next.

It is envisaged that the agents would be pretrained on a sim
lator prior to actual deployment. Tests to date with the isolat
signal test-bed have shown that pretraining requirements are
onerous. Analogous testing with the multiagent test-bed is
quired to determine pretraining requirements and to ascertain h
close to expected operational conditions the simulated pretrain
scenarios would have to be to ensure reasonable generalizatio
the expected range of operating conditions upon deployme
Once deployed, the agents would be programmed to conti
their training to refine the Q-estimates based on actual envir
mental and operating conditions. Exploration would be necess
in the initial stages of deployment, but this exploration should
incremental and should not produce control decisions that app
to drivers to be obviously inappropriate to the situation. A ‘‘con
tinuing education’’ strategy should also be developed that w
enable the agent to assess its performance on an ongoing ba
light of possibly changing conditions and determine when a
how much additional on-line training may be required.

A sensory subsystem is needed to provide the required inp
to the agents. This may involve adaptation of existing inducti
loop technology, although a video imaging system would like
be more effective. A contingency plan would also be required
deal with a potential loss of communications. Evaluation of sim
lated agent performance using only local state inputs, but in
multiagent context, is planned to provide insights into a possi
strategy for this scenario.

Future Research

Following the completion of the current evaluation o
reinforcement-learning-based signal control for a linear sign
system, extension to a two-dimensional network will be pursu
To fully evaluate the reinforcement-learning approach, it will b
necessary to compare its performance with that of state-of-the
control methodologies, such as SCOOT.

The final stage of this ongoing research effort involves int
grating the multiagent traffic control system with dynamic rou
guidance, also based on reinforcement learning. This is seen
two-way interaction. Collective perceptions of the Q-learnin
agents concerning the distribution of congestion across the
work could be used as a basis for advising drivers of le
congested routes using variable-message signs, local-area
broadcasts, or other means. The other side of this interac
would involve the real-time adaptation of the agents across
network to the changes in traffic flows resulting from the reacti
of drivers to the guidance information, thus completing the fee
back loop. Again, the ability of Q-learning to provide adaptiv
real-time control is seen as the key to the effective integration
dynamic route guidance with traffic signal system control.

Conclusions

Reinforcement learning appears to offer significant advantage
the application to transportation processes where real-time, ad
tive control is the key to improving effectiveness and efficienc
The ability to learn through dynamic interaction with the enviro
ment is seen as a significant benefit relative to control meth
ologies that rely on prespecified models of these processes.

The current research effort outlined in this paper, one phase
which was presented as a case study, involves the applicatio
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reinforcement learning to the problem of traffic signal contro
with particular emphasis on heavily congested conditions in
two-dimensional road network. Preliminary results from the a
plication of Q-learning to an isolated, two-phase traffic signal a
encouraging. The Q-learning agent performed on a par with p
timed signals under traffic conditions amenable to pretimed co
trol, involving constant or constant-ratio flow rates. Under mo
variable traffic conditions, the Q-learning agent demonstrat
marked superiority due to its ability to adapt to changing circum
stances.

Research is currently under way to extend the reinforceme
learning approach to a linear signal system and will be repor
on in the near future. Subsequent phases of this research e
will involve extension to control of a two-dimensional system o
traffic signals and the integration of traffic signal control based
Q-learning with dynamic route guidance. Comparison of th
Q-learning approach to traffic signal control with existing stat
of-the-art methods such as SCOOT will also be pursued.
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