
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 5, SEPTEMBER 2003 597

Cooperative, Hybrid Agent Architecture for
Real-Time Traffic Signal Control

Min Chee Choy, Student Member, IEEE, Dipti Srinivasan, Senior Member, IEEE, and Ruey Long Cheu, Member, IEEE

Abstract—This paper presents a new hybrid, synergistic
approach in applying computational intelligence concepts to
implement a cooperative, hierarchical, multiagent system for
real-time traffic signal control of a complex traffic network.
The large-scale traffic signal control problem is divided into
various subproblems, and each subproblem is handled by an
intelligent agent with fuzzy neural decision-making module.
The decisions made by lower-level agents are mediated by their
respective higher-level agents. Through adopting a cooperative
distributed problem solving approach, coordinated control by the
agents is achieved. In order for the multiagent architecture to
adapt itself continuously to the dynamically changing problem
domain, a multistage online learning process for each agent is
implemented involving reinforcement learning, learning rate and
weight adjustment as well as dynamic update of fuzzy relations
using evolutionary algorithm. The test bed used for this research
is a section of the Central Business District of Singapore. The
performance of the proposed multiagent architecture is evaluated
against the set of signal plans used by the current real-time adap-
tive traffic control system. The multiagent architecture produces
significant improvements in the conditions of the traffic network,
reducing the total mean delay by 40% and total vehicle stoppage
time by 50%.

Index Terms—Cooperative systems, fuzzy neural networks, on-
line learning, multiagent system, real-time traffic signal control.

I. INTRODUCTION

CONTROL of traffic signals for efficient movement of
traffic on urban streets constitutes a challenging part of

an urban traffic control system (UTCS). Traffic responsive,
closed-loop systems, or adaptive traffic signal systems are
becoming increasingly critical for transportation agencies to
meet their day-to-day operation and management needs [1].
For a large-scale UTCS, it may be difficult or impossible to tell
whether the traffic network is flowing smoothly and can asses
its current state. In addition, due to some of the nonlinear and
stochastic traffic processes in a traffic network, predicting the
effects of modifying any of the traffic control parameters is not
easy. As such, besides the classical traffic control techniques
[2], informed intervention is needed in the form of coordination
between various controllers in the network to prevent the
traffic network from degenerating into a pathological state
where the vehicle progress slows or stops completely. Also, an

Manuscript received July 15, 2002; revised May 1, 2003. This paper was rec-
ommended by Guest Editor H. Zhang.

M. C. Choy and D. Srinivasan are with the Department of Electrical and
Computer Engineering, National University of Singapore, Singapore 117576
(e-mail: engp1637@nus.edu.sg, dipti@nus.edu.sg).

R. L. Cheu is with the Department of Civil Engineering, National University
of Singapore, Singapore 117576 (e-mail: cheu@nus.edu.sg).

Digital Object Identifier 10.1109/TSMCA.2003.817394

additional challenge would be implementing adaptive traffic
control in real-time, particularly for online signal optimization,
as proposed by earlier researches in this field [3]. In view of
these challenges, a multiagent architecture that incorporates
computational intelligence techniques is implemented in this
research to provide effective real-time traffic control. Various
issues of intelligent cooperative problem solving in a multia-
gent system through effective coordination, communication,
knowledge acquisition, decision-making, goal formulation, and
online learning are investigated in this research.

Several researches have tried to realize distributed control,
which acquires optimal signal control over a group of signals
without supervision. Various types of multiagent systems
have been applied in these works [4]–[7]. In some cases, the
researches dealt with simplified traffic conditions, such as
regularly located intersections [4] and inclusion of one-way
roads [5] while others have used a section of the real-world
scenario [8]. In [9], the agents are in the form of traffic fuzzy
controller. In [6], genetic algorithm and reinforcement learning
are applied in implementing the multiagent system, which is
self-organizing.

Based on the studies, it has been found that more research
needs to be done to implement a systematic, unsupervised, dis-
tributed control scheme for testing in a complex traffic network
simulated for a real world scenario. The concept of coopera-
tion among multiagents to solve a complex distributed problem
has been applied in the traffic domain as seen in some of the
mentioned works. However, much needs to be done to quantify
the level of cooperation as well as to systemize the cooperation
mechanism.

The main objectives of this research is to address this need
and develop a new distributed, cooperative problem solving
approach through the use of multiple interacting, autonomous
agents to provide effective signal control strategies for real-time
traffic management of an arterial network. This multiagent
system is designed to leverage on the synergistic relationship
between neural network and fuzzy logic systems [10], [11]. It
also introduces an innovative multistage approach for online
learning and self-organization of the agents via reinforcement
learning [12], [13] and fuzzy rules adjustment by evolutionary
algorithm [14], [15].

II. HIERARCHICAL MULTIAGENT ARCHITECTURE

The multiagent architecture is designed in a hierarchical
manner to provide different levels of control for the traffic
network. The architecture consists of three layers. The lowest

1083-4427/03$17.00 © 2003 IEEE

598 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 5, SEPTEMBER 2003

Fig. 1. Schematic diagram of the multiagent architecture.

layer consists of intersection controller agents (ICA) that con-
trol individual, preassigned intersections in the traffic network.
The middle layer consists of zone controller agents (ZCA) that
controls several preassigned ICAs. The highest level consists
of one regional controller agent (RCA) controls all the ZCAs.
The three-layered multiagent architecture is shown in Fig. 1.

The problem of real-time network-wide signal control is di-
vided into several subproblems, each with a different scale and
magnitude. Individual agents from each layer of the multiagent
architecture are tasked to manage the respective sub-problems
according to their hierarchy. Each agent is a concurrent logical
process capable of querying the environment (e.g., sensors and
agents in the lower hierarchy within its control) and making
decisions autonomously. The agents in each layer decide the
policies (which comprise of signal timing plan adjustments and
the direction of offset coordination) and levels of cooperation
(defined by the cooperative factor) that they deem appropriate
based on the conditions of the intersections, or set of inter-
sections under their jurisdictions. Besides having higher-level
traffic network parameters as inputs to their decision-making
process, the higher-level agents obtain the cooperative factors
recommended by their lower level agents as inputs too (Fig. 2
shows that the intersection cooperative factors recommended
by the lower level ICAs are part of the inputs of a ZCA).
Based on these inputs, the decision-making process of the

higher level agents may present a set of higher-level policies
that are different from those policies recommended by their
lower level agents or they may choose to follow the lower
level policies.

The policy repository is a dynamic database for storing
all the policies recommended by the controller agents of all
levels at the end of each evaluation period. The end of an
evaluation period is indicated when all the intersections have
finished their current signal phases. After each period, the
previously recommended policies are updated with a new set
of policies. The policy repository then performs arbitration and
conflict resolution for the entire set of recommended polices.
The arbitration process gives priority to higher-level policies.
However, since one of the outputs, namely the cooperative
factor, of the lower-level agents are part of the inputs of the
higher-level agents (as mentioned earlier), these lower-level
decisions affect directly the outcomes of the higher-level
agent’s decision-making process. As such, lower-level policies
are not starved off by the arbitration process. Following the ar-
bitration process, the set of chosen policies is sent to the policy
interpreter. The function of the policy interpreter is to translate
the chosen set of policies into actions, which may result in
adjustment of the various signal-timing parameters such as
phase-length, cycle-time, direction of offset coordination, for
the affected intersections.

CHOY et al.: COOPERATIVE, HYBRID AGENT ARCHITECTURE FOR REAL-TIME TRAFFIC SIGNAL CONTROL 599

Fig. 2. Schematic diagram of a zone controller agent.

III. FUZZY-NEURAL DECISION MAKING MODULE

Within each autonomous agent, the fuzzy-neural decision
making (FNDM) module comprises of a knowledge base and
an inference engine. As shown in Fig. 3, the FNDM module
consists of two main functional blocks, namely, the signal
policy inference engine for generating an appropriate policy
(for this research, the policy refers to a traffic signal policy)
and the cooperative factor inference engine for generating a
suitable cooperative factor. A cooperative factor is one of the
two outputs generated by a lower level agent which is in turn
fed to its parent (higher-level) agent. It indicates the level of
cooperation that the lower level agent deems appropriate for
the current traffic conditions within its jurisdiction.

The architecture of the FNDM module follows the multilayer
feed-forward neural network approach that mimics the fuzzy
reasoning mechanism [16], [17]. As such, the fuzzy-neural
architecture consists of five layers to represent, in between the
layers, the fuzzification, implication, consequent and defuzzi-
fication processes of the fuzzy reasoning mechanism. Using
this approach, the architecture provides means to justify the
choices of signal policy and level of cooperation (defined by the
cooperative factor).

Each ICA takes in the lane-specific occupancy, flow and rate
of change of flow of the different intersection approaches as in-
puts. The occupancy, flow and rate of change of flow are based
on the measurements by loop detectors (refer to Section V part
B for more details on the loop detectors) during the phase when
traffic lights are green. In order to quantify the traffic condi-
tions of the intersections in a zone, the FNDM module of the
ZCA takes in each intersection’s representative occupancy, flow
and rate of change of flow as its inputs. The fuzzy sets ofoc-
cupancy, flow and rate of change of traffic volumehave three
linguistic labels, namelyhigh, mediumandlow to describe the
respective degrees of membership (Gaussian membership func-
tion). Besides these inputs, as mentioned in the previous sec-
tion, the ZCA also takes in the intersection cooperative factors
recommended by the respective ICAs under its jurisdiction (to
reflect the level of cooperation each ICA sees fit for its own in-
tersection, all of which are within the zone controlled by the

ZCA). The antecedents of the fuzzy rules are defined by prop-
erly linking the nodes in the second layer to those in the third
layer. The third layer fires each rule based on the T-norm fuzzy
operation, implemented using theMIN operator.

Nodes in the third layer define the degree of current traffic
loading of the zone (i.e.,high, mediumandlow loads) and the
level of cooperation needed for the intersections within the zone
(i.e.,high, medium and low degrees of cooperation). The nodes
in the fourth layer represent the various consequents that corre-
spond to the fuzzy rules in the FNDM module. For the signal
policy inference engine, the consequents consist of the various
signal improvement/control policies. For the cooperation factor
inference engine, the consequents consist of the various pos-
sible levels of cooperation. Since some of the fuzzy rules share
the same consequent, the S-norm fuzzy operation is used to in-
tegrate the rules. For this research, the S-norm fuzzy operation
is implemented using theMAX operator.

Finally, the fifth layer performs the defuzzification process
in order to obtain crisp values correspond to the chosen signal
policy and cooperative factor (i.e., outputs of the FNDM module
for each agent). The architecture of the FNDM module for the
ICA and RCA is largely similar to the one described for the
ZCA. The main difference lies in the inputs and due to the hi-
erarchical nature of the overall multiagent architecture. For ex-
ample, for RCA, the inputs are the traffic parameters from all
the zones in the region as well as the zonal cooperative factors
recommended by the ZCAs while the outputs are the regional
level signal policy and the regional level cooperative factor. An
example of a rule in the FNDM is as follows:

IF (overall aggregate occupancyis high) and (overall ag-
gregate flowis high) and (overall aggregate rate of change
of traffic volumeis high)
THEN (traffic loading is high) and (level of cooperation
neededis high)

IV. ONLINE ADAPTATION BY THE AGENTS

In this research, several techniques have been applied to
facilitate online adaptation by the agents in the dynamically

600 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 5, SEPTEMBER 2003

Fig. 3. Fuzzy-neural decision making module of a zone controller agent.

changing problem domain of a traffic network. Online adap-
tation mainly takes the form of a multistage online learning
process as shown in Fig. 4. This process primarily consists of
three subprocesses: reinforcement learning, weight adjustment
and adjustment of fuzzy relations. Reinforcement learning is
first performed. The reinforcement obtained from this process
is backpropagated to the RCA and subsequently, to all the
lower-level agents. Following which, each agent proceeds
to adjust the learning rate for each neuron and activate the
forgetting mechanism if necessary (as determined by the value
of the reinforcement that the agent received). When that is
done, each agent adjusts the weights of the neurons in its
FNDM module according to the topological weight update
method. Finally, the reinforcement is used to update the fitness
value of each neuron in the agent’s FNDM module. If the
fitness values of the neurons fall below some prespecified
values, the fuzzy relations (represented by how the outputs of
a layer of neurons are connected to the inputs of the next layer
of neurons) will be updated using the evolutionary algorithm
fuzzy relation generator (EAFRG). Sections IV-A–IV-C will
describe in details the various mechanisms of the multistage
online learning process.

A. Online Reinforcement Learning Process

In view of the various advantages of reinforcement learning
[12], [13], this concept is adopted in the multiagent architecture

to develop an unsupervised, online learning mechanism based
on feedbacks from the environment (whose state is in turn af-
fected by the policies recommended by the multiagent archi-
tecture). Fig. 1 shows that the online reinforcement-learning
(ORL) module is part of the multiagent architecture. The role of
the ORL module is to generate reinforcements which are to be
backpropagated to the agents to facilitate dynamic adjustment of
their rule-bases represented by their FNDM modules. The ORL
module is implemented using similar fuzzy-neural concepts that
are applied in developing the FNDM module (refer to Fig. 5).
The ORL module is designed to generate reinforcement based
on comparison of the current estimated state of the zone with
the previous state. The reinforcement signalthat is generated
from the ORL module can be derived as follows:

(1)

where is the state change sensitivity constant (determined em-
pirically), is the current state value, is the best state value,
and is the previous state value. For there to be a positive re-
inforcement, it is necessary that and

. Using the backpropagation technique, the change of
weight from neuron to the activated output neuronis
as follows:

(2)

CHOY et al.: COOPERATIVE, HYBRID AGENT ARCHITECTURE FOR REAL-TIME TRAFFIC SIGNAL CONTROL 601

Fig. 4. Multistage online learning process for each agent.

where is the learning rate, is the gradient for the output
neuron , is the output of neuron. Note that

(3)

(4)

in which is the number of inputs for neuron, is the back-
propagated reinforcement value at output nodeand is the
transfer function for neuron. The superscript in denotes
the first order derivative of . For hidden layers of the neural
network, the local gradient for hidden neuron with neu-
rons on its right is defined as follows:

(5)

where

(6)

in which is the number of inputs for neuron. Hence, if a
fuzzy relation represented by a neuron is appropriate for a par-
ticular traffic condition, a positive reinforcement in the form of
a positive will be received and vice versa. Upon receiving a
reinforcement, each neuron in the FNDM module of an agent
can proceed to adjust its learning rate and weight. The details of
this process will be described in Section IV-B.

B. Learning Rate and Weight Adjustment Process

The weight of each neuron in the FNDM module of an agent
can be adjusted dynamically either by topological weight up-
date or by activating the forgetting mechanism. The learning
rate of each neuron can also be adjusted dynamically according

602 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 5, SEPTEMBER 2003

Fig. 5. ORL module.

to some well-known methods [18], [19]. Sections IV-B.I–III de-
scribe each of these techniques in more details.

Learning Rate Adaptation:According to Fig. 4, the learning
rate of each neuron is adjusted first before the topological weight
update. This is done dynamically according to the sign of the
backpropagated gradient. The adjustments are made according
to the guidelines mentioned in [18], [19]. As such, the weigh
update equation for neuronat the th iteration is as shown
below.

(7)

where, is the synaptic weight joining nodeto , is the
topological neighborhood of the activated neuronwith respect
to neuron , is the dynamic learning rate of neuron, is
the output of neuronand is the gradient of neuron.

Topological Weight Update:Unlike the conventional back-
propagation method, not all neurons in the FNDM module have
their weights updated during the backward pass. Based on the
neurobiological evidence for lateral interaction among a set of
excited neurons, it is clear that a firing neuron tends to excite
neurons within its immediate neighborhood more than the neu-
rons away from it. This observation has also been made in the
researches on self-organizing maps (SOM) [20].

Let denote the topological neighborhood centered on the
winning neuron and encompassing a set of excited neurons in
which a typical one is denoted by. Let denote the lateral
distance between the winning neuronand the excited neuron
. Fig. 6 depicts the of the winning neuron (which is taken

to be the middle one for this example) as a function of the.
Unlike SOM, the topological network, , is only symmetrical
for the neuron in the middle of the layer due to the nature of the
fuzzy reasoning mechanism and the position of each neuron.
As shown in the figure, the function for is chosen for con-
venience and other functions such as the Gaussian function can
be used instead. It should be noted that the amplitude of
decreases with increasing . This is a necessary condition for
convergence. However, since the learning process of the FNDM
module continues indefinitely in the dynamic traffic network,

Fig. 6. Topological neighborhoodh as a function ofd .

the size of the topological neighborhood does not shrink with
time.

Hence, using this concept, only weights belonging to neu-
rons within the topological neighborhood of the winning/acti-
vated neuron are updated and the process of backpropagation
can be accelerated. The winning neuron in the case of the FNDM
module is decided by the center of area defuzzification process
(fourth layer), S-norm fuzzy operator (third layer) and T-norm
fuzzy operator (second layer).

Forgetting Mechanism:Finally, weight adjustment can also
be accomplished by using the forgetting mechanism. A forget-
ting mechanism is implemented in the FNDM of all agents and
ORL module to affect the weight adjustment process. The prin-
ciple behind the forgetting mechanism is to enable the decision
module to search through the solution space in an explorative
manner rather than a purely exploitative manner [21] in order to
reduce the number of instances whereby the search is trapped in
a local minima. This is similar to the concept of simulated an-
nealing whose objective is to find the global minimum of a cost
function that characterizes large and complex systems. In doing
so, simulated annealing proposes that instead of going downhill
all the while to favor low energy ordered states, it is good to

CHOY et al.: COOPERATIVE, HYBRID AGENT ARCHITECTURE FOR REAL-TIME TRAFFIC SIGNAL CONTROL 603

go downhill most of the time. In other words, an uphill search
is needed at certain times. Results have shown in [21] that this
new approach provides a robust framework for reinforcement
learning in a changing problem domain where the improvised
algorithm with the forgetting mechanism outperformed conven-
tional the Q-learning approach. For this research, a variation of
the forgetting mechanism is used.

The following equation shows the additional weight adjust-
ment (besides the one using backpropagation) that is imple-
mented in the fuzzy-neural networks:

(8)

where, is the synaptic weight between nodeand node ,
is the forgetting term and its value is , and

is a positive constant to be determined empirically. Using this
approach, the search for the optimal solution does not get stuck
in a local minima since the transition out of it is always possible.

Following the learning rate and weight adjustment process,
the last stage of the multistage online learning process involves
using evolutionary algorithm for adjustment of fuzzy relation
according to the fitness values of individual neurons in the
FNDM module. The following section will describe this stage
in details.

C. Evolutionary Algorithm Fuzzy Relations Generator

Fuzzy rules lack precision and their membership functions
need to be updated regularly in order for the rules to be valid
in a dynamically changing problem domain. Invalid rules may
even need to be discarded and new rules generated to replace
them. Getting training data for rules optimization problems can
be time consuming and it may not even be feasible to do so in
certain problem domains due to issue of validity and accuracy.
In this paper, the fuzzy rules adjustment process using evolu-
tionary algorithm is performed online throughout the running
of the simulation in order to accommodate possible fluctuations
of the system dynamics. The evolutionary algorithm fuzzy
relation generator (EAFRG) is used to generate new fuzzy
relations based on the reinforcements received by the agents,
thus changing the knowledge representation for each agent as
the traffic network evolves. The chromosome that is used by
the EAFRG determines the way nodes in layer 2 of the FNDM
module (antecedents) are linked to the implication nodes in
layer 3.

Obtaining a suitable fitness function to evaluate the generated
fuzzy relations is not an easy task since an ideal fitness func-
tion should be able to produce a fuzzy relation that results in a
generally satisfying (how much/little deviations the fuzzy rela-
tion possesses in comparison with some well-known guidelines
or rule-of-the-thumb for the chosen problem domain) as well
as contextually valid/eligible fuzzy rule (i.e., valid according to
the current context of the problem state) that can accommodate
exceptions in the current problem state to a reasonable extent.
As such, the fitness function should take into consideration the
current eligibility of the fuzzy relation as well as the degree to

which the rule is generally satisfying. The fitness function,,
for the EAFRG is defined as follows:

(9)

where, is the current eligibility of the antecedent-implication
relation, is the measure of whether the relation is generally
satisfying and is the sensitivity factor for (determined em-
pirically). Hence, as can be seen,and have counter bal-
ancing influence on each other. A relation may be generally sat-
isfying, having a high value, but due to the changing system
dynamics, it may not be eligible.

Hence, a low value will result. Adding them up will pro-
duce the overall fitness of the relation. is further defined as
follows:

(10)

where, is the eligibility sensitivity factor (determined empiri-
cally) and denotes the eligibility trace computed as follows:

(11)

where denotes time, is the decay constant (determined
empirically), is the reinforcement, is the activation value
which is zero (0) if the rule is not activated and one (1) if
activated. The function denotes taking the difference
between two chromosome vectors. In this case, the first chro-
mosome vector is , the current chromosome used
by the FNDM module and the second chromosome vector is

, the chromosome generated by EAFRG. For this
research, is defined as follows:

(12)

where, denotes a node in the antecedent (second layer) and
denotes a node in the implication (third layer) such that the
relation is zero(0) if node and are not linked, and
denotes the correlation betweenand .

For each update to obtain the best chromosome (representing
a set of fuzzy relations between layer 2 and layer 3), the config-
uration used is as follows:

population size 100;
number of epochs 50;
probability of mutation 0.07;
probability of crossover 0.4.;
number of members in the pool of elites80.

As can be seen, the best 80 members of a previous popula-
tion are carried forward in the new population before the pro-
cesses of mutation and crossover repeat. Tests have been carried
out to optimize these parameters according to the requirements
of the system. Overall, the computational speed of the EAFRG
does not hinder the real-time performance of the controller agent
since the chromosome is a binary vector and the population size
is relatively small.

604 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 5, SEPTEMBER 2003

Fig. 7. Breakdown of a three-phased cycle.

V. SIMULATIONS AND RESULTS

Sections V-A–C describe the application domain of the mul-
tiagent architecture in details. In particular, the problem of con-
trolling traffic signals within a complex traffic network with
multiple intersections will be discussed. This is followed by a
detailed description of the simulation platform and an analysis
of the simulation results.

A. Traffic Signal Control Problem

Traffic signal operations at the intersections of an arterial net-
work are one of the ways in which traffic conditions within the
network can be influenced and controlled. For this research, the
signal control policies formulated by the agents involved im-
plementing the three types of control actions. They are namely
cycle time adjustment (see Fig. 7), split adjustment (where split
is the fraction of the cycle time that is given as the green phase
for a set of traffic movements), and offset adjustment (where
offset is the time difference between the beginning of green
phases for a continuous traffic movement at successive inter-
sections that may give rise to a “green wave” along an arterial).
For a large, complex traffic network with multiple intersections,
setting the values of these traffic signal parameters for each in-
tersection in the network in a traffic-responsive manner is an
extremely difficult task especially with the interdependency of
each intersection and its neighbors. Hence, due to the compli-
cated nature of the traffic signal control problem, the multiagent
architecture is applied with the objective of achieving coordi-
nated traffic signal control for a complex traffic network so as
to reduce the likelihood of traffic congestion.

B. Simulation Platform

The multiagent architecture is implemented as a multi-
threading Java application. To ensure that agents satisfy the
real-time considerations and deadlocks do not exist during
the simulation, features for synchronizing access to critical
sections such as monitors are implemented in the multiagent
architecture. In addition, the priorities of the multiple threads
are systematically assigned.

The traffic network used to evaluate the performance of the
proposed multiagent architecture is based on a section of the

central business district (CBD) area of Singapore. The real-
world network is modeled in PARAMICS modeler using a total
of 330 links and 130 nodes. This section represents one of the
busiest regions of the road network where frequent traffic con-
gestion is common during peak hours. The network’s traffic op-
erations were simulated using Version 4.0 of PARAMICS [22].
The necessary data for simulation was obtained from the Land
Transport Authority (LTA) of Singapore. Inductive loop detec-
tors were coded in the simulated network at stop lines of the
intersection approaches, similar to the real-world installations.

Using the PARAMICS application programming interface
(API), information such as lane occupancy, flow and rate of
change of flow is extracted in real-time from the loop detectors.
The flow, lane occupancy and rate of change of flow were
measured at the green phase only (including the amber time).
This information would be fed into the respective ICAs at the
end of each signal phase. The agents’ outputs in the form of
traffic signal control policies (as mentioned in the previous
section) are implemented in the simulation via the API to
effect the latest signal adjustments. The sampling rate for the
agents implemented in Java and the PARAMICS API has to be
coordinated in order to make sure that the agents make timely
responses to the dynamically changing traffic network.

The actual intersections modeled in the simulated network
are shown in Fig. 8 including the 25 intersections to be con-
trolled by the multiagent approach (each circle in Fig. 8 denotes
an intersection that is controlled by an ICA) presented in this
paper. For this research, each ZCA controls five prespecified
ICAs. The jurisdiction of each ZCA is fixed throughout the sim-
ulation. Coordinated offset adjustment is implemented together
with the changes in the phase length (and hence cycle length) of
the traffic signal at the end of each evaluation period, if neces-
sary.

Tests have been conducted to evaluate the performance of the
traffic network with and without the multiagent architecture.
The signal settings used for benchmarking were the actual
signal plans implemented by LTA’s Green Link Determining
(GLIDE) signal control system. GLIDE is the local name of
Sydney Coordinated Adaptive Traffic System (SCATS) and
it is the state-of-the-art adaptive traffic signal control system
[23] which is currently used in over 70 urban traffic centers in

CHOY et al.: COOPERATIVE, HYBRID AGENT ARCHITECTURE FOR REAL-TIME TRAFFIC SIGNAL CONTROL 605

Fig. 8. ICAs in the traffic network.

15 countries world-wide). As such, for simulation scenarios
without the multiagent architecture, the signal plans selected
and executed by GLIDE were implemented in the coded
network at the respective intersections as the traffic loading at
each intersection changes with time. The traffic loading was
derived from GLIDE’s traffic count from the loop detectors.

C. Simulation Scenarios and Results

The following two sets of simulation scenarios are investi-
gated in this paper.

Scenario 1: It involves a total simulation time of 3 h with
a single peak-within-peak period between 7:30 a.m. and
8:30 a.m.
Scenario 2: It involves a total simulation time of 6 h with
two peak-within-peak periods introduced between 7:30
a.m. and 8:30 a.m., and between 10:30 a.m. and 11:30
a.m. to evaluate the learning process of the agents.

Six repeated simulation runs with different random number
seeds were conducted for each scenario. The average delay per
vehicle, and total stoppage time computed from all the vehicles
were used as the performance criteria.

The plots given in Fig. 9 show the overall network perfor-
mance measured in terms of the performance criteria mentioned

earlier for the first scenario involving a single peak-within-peak
period. It can be seen that the overall traffic network perfor-
mance is better when the multiagent architecture is implemented
with the network. Through using the agents, the total vehicle
mean delay has decreased by approximately 15% [Fig. 9(a)] and
the total all stoppage time for vehicles has reduced by approxi-
mately 30% [Fig. 9(b)] during the peak hour at 0830 hrs.

From the plots given in Fig. 10, it can be seen that the
overall network performance is better when the multiagent
architecture is implemented for scenario 2. Through using the
agents, theaveragedelaypervehicle is reducedbyapproximately
40% and the total stoppage time for vehicles is reduced by
approximately 50% at the end of the simulation run. It can
also be seen from Fig. 10 that the traffic network without the
agents begins to degenerate into a pathological state after the
second peak period, as suggested by the positive gradients
and the first order derivatives of the curves for average delay
and total stoppage time. Compared to the performance of the
traffic network with agents during the first three hours of
simulation (scenario 1), the performance of the traffic network
has gained significant improvement for the next three hours
with respect to the fixed time signal plans as shown in the
plots for scenario 2. This indicates that to a certain extent,

606 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 5, SEPTEMBER 2003

(a)

(b)

Fig. 9. Results of simulation runs with and without agents for scenario 1.

Fig. 10. Results of simulation runs with and without agents for scenario 2.

the multiagent architecture has adapted itself according to the
changing dynamics of the traffic network.

Fig. 11. Hotspots at 0930 h.

In order to better illustrate the improvements of the traffic
network with the implementation of the multiagent architecture,
screenshots of the network hotspots at 9:30 a.m. are taken and
presented in Fig. 11. The PARAMICS modeling environment is
preset to denote 13 stopped or queued vehicles with a hotspot or
red circle. As can be seen from the Fig. 11, the traffic network
evolves into a pathological state with over saturation at 0930 h
without the multiagent architecture. The numbers of congested
links are well over forties in number. Using agents, congestions
have been confined to the upper section of the traffic network
and the number of congested links is reduced to less than ten.
Finally, it has to be noted that the performance of the multiagent
architecture is limited by the overall capacity of the simulated
traffic network.

VI. CONCLUSION

In this paper, a novel distributed, unsupervised coordinated
traffic responsive strategy is implemented using a hybrid, co-
operative multiagent architecture. In order to achieve effective
unsupervised control in a dynamically changing environment,

CHOY et al.: COOPERATIVE, HYBRID AGENT ARCHITECTURE FOR REAL-TIME TRAFFIC SIGNAL CONTROL 607

the multiagent architecture is designed using a variety of inno-
vative applications involving concepts and theories from neural
network, evolutionary algorithm, fuzzy logic, and reinforcement
learning. The uniqueness of this multiagent architecture lies in
the synergistic integration of these computational intelligence
techniques, the multistage online learning process, as well as the
well-defined cooperative mechanisms in the architecture that
enable agents to adapt and make effective control policies in the
dynamic traffic network. The performance of the multiagent ar-
chitecture has been evaluated using a simulated model of a real
world traffic network. Repeated rounds of simulation produce
results which show that the presence of the multiagent archi-
tecture has generated significant improvement in the conditions
of the traffic network when compared with signal plans imple-
mented by the current real-time, responsive and adaptive signal
control system. The tests have also shown that the multiagent
architecture is capable of making timely decisions in real-time
even with the employment of various artificial intelligence tech-
niques, which are more computationally intensive than other ap-
proaches.

ACKNOWLEDGMENT

The authors would like to thank the Land Transportation Au-
thority of Singapore (LTA) for providing data necessary for the
simulation modeling and F. Logi for his advice.

REFERENCES

[1] M. Tsavachidis, M. Hoops, and H. Keller, “Coordinated traffic manage-
ment in the greater area of munich,” inProc. Int. Conf. Applications
Advanced Technologies Transportation Engineering, 1998, pp. 25–32.

[2] N. J. Garber and L. A. Hoel,Traffic and Highway Engineering, 2nd
ed. Boston, MA: PWS-Kent, 1997, pp. 281–329.

[3] D. A. Haver and D. J. Tarnoff, “Future directions for traffic management
systems,”IEEE Trans. Veh. Technol., vol. 40, pp. 4–10, Feb. 1991.

[4] S. Chiu and S. Chand, “Self-organizing traffic control via fuzzy logic,”
in Proc. IEEE 32nd Conf. Decision Control, 1993, pp. 1987–1902.

[5] G. Nakamiti and F. Gomide, “Fuzzy sets in distributed traffic control,”
in Proc. 5th IEEE Int. Conf. Fuzzy Systems, 1996, pp. 1617–1623.

[6] S. Mikami and Y. Kakazu, “Genetic reinforcement learning for cooper-
ative traffic signal control,” inProc. IEEE 1st Conf. Evolutionary Com-
putation, vol. 1, 1994, pp. 223–228.

[7] V. Manikonda, R. Levy, S. Satapathy, J. D. Lovell, C. P. Chang, and
A. Teittinen, “Autonomous agents for traffic simulation and control,”
in National Research Council Transportation Research Board. Meeting
80th, Washington, D.C., 2001.

[8] S. Takahashi, S. Nakamura, H. Kazama, and H. Fujikura, “Adaptive
traffic signal control for the fluctuations of the flow using a genetic algo-
rithm,” in Proc. 8th Int. Conf. Urban Transport Environment 21st Cen-
tury, 2002, pp. 239–247.

[9] J. H. Lee and H. Lee-Kwang, “Distributed and cooperative fuzzy con-
trollers for traffic intersections group,”IEEE Trans. Syst., Man, Cybern.
C, vol. 29, pp. 263–271, May 1999.

[10] R. A. Francelin and F. A. C. Gomide, “A neural network for fuzzy de-
cision making problems,” inProc. IEEE 2nd Int. Conf. Fuzzy Systems,
vol. 1, San Francisco, CA, 1993, pp. 655–660.

[11] K. Bogenberger, H. Keller, and S. Vukanovic, “A neuro-fuzzy algorithm
for coordinated traffic responsive ramp metering,” inProc. IEEE Intel-
ligent Transportation Systems, 1994, pp. 94–99.

[12] R. Jaksa, P. Majernik, and P. Sincak,Reinforcement Learning Based
on Back Propagation for Mobile Robot Navigation. Kosice: Compu-
tational Intelligence Group Dept. Cybern. Artif. Intell., Technical Uni-
versity.

[13] R. S. Sutton and A. Barto,Reinforcement Learning: An Introduction:
MIT Press, 1998.

[14] D. A. Linkens and H. O. Nyongesa, “Genetics algorithms for fuzzy con-
trol,” in Proc. Institute Elect. Engg. Control Theory Application, 1995,
pp. 161–185.

[15] M. Mohammadian and R. J. Stonier, “Generating fuzzy rules by genetic
algorithms,” inProc. 3rd IEEE Int. Workshop Robot Human Communi-
cation, 1994, pp. 362–367.

[16] S. Horikawa, T. Furahashi, and Y. Uchikawa, “On fuzzy modeling using
fuzzy neural networks with back propagation algorithm,”IEEE Trans.
Neural Networks, vol. 3, pp. 801–806, Sept. 1992.

[17] Y. H. Lin and G. A. Cunningham, “A new approach to fuzzy-neural
system modeling,”IEEE Trans. Fuzzy Syst., pp. 190–198, 1995.

[18] R. A. Jacobs, “Increased rates of convergence through learning rate
adaptation,”Neural Networks, vol. 1, pp. 295–307, 1988.

[19] Z. Luo, “On the convergence of the LMS algorithm with adaptive
learning rate for linear feedforward networks,”Neural Comput., vol.
3, pp. 226–245, 1991.

[20] T. Kohonen,Self-Organizing Maps, 2 ed. Berlin, Germany: Spring-
Verlag, 1997b.

[21] G. Yan, F. Yang, T. Hickey, and M. Goldstein, “Coordination of ex-
ploration and exploitation in a dynamic environment,” inProc. Inter-
national Joint Conf. Neural Networks, 2001, pp. 1014–1018.

[22] Paramics Modeller v4.0 User Guide and Reference Manual, Quadstone
Ltd, Edinburgh, U.K, 2002.

[23] P. B. Wolshon and W. C. Taylor, “Analysis of intersection delay under
real-time adaptive signal control,”Trans. Res. C, vol. 7C, no. 1, pp.
53–72, Feb. 1999.

Min Chee Choy (S’03) was born in 1976. He received the B.Eng. degree in
electrical and computer engineering from the National University of Singapore,
Singapore in 2001. He is currently pursueing the Ph.D. degree in application of
computational intelligence techniques for real-time control of traffic signals.

His main research interests are applications of distributed computational tech-
niques and online learning.

Dipti Srinivasan (M’89–SM’02) received the Ph.D. degree in engineering from
National University of Singapore, Singapore.

She worked as a Postdoctoral Researcher at University of California, Berkeley
from 1994 to 1995 before joining the National University of Singapore as an As-
sistant Professor with the Department of Electrical and Computer Engineering.
Her research interest is in application of soft computing techniques to engi-
neering optimization and control problems.

Ruey Long Cheu(M’01) received the B.Eng. and M.Eng. degrees from the Na-
tional University of Singapore, Sinapore and the Ph.D. degree from University
of California, Irvine.

He is currently an Associate Professor in the Department of Civil Engineering
and head of the Intelligent Transportation and Vehicle Systems Laboratory, the
National University of Singapore, Singapore. His research interests are in in-
telligent transportation systems with emphasis on the applications of artificial
intelligence and emerging computing techniques in transportation.

Dr. Cheu is a member of the U.S. Transportation Research Board Committee
on Artificial Intelligence.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

