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CHAMPION GARRY KASPAROV IN 1997 EMPLOYED 480 CUSTOM CHESS CHIPS.

THIS ARTICLE DESCRIBES THE DESIGN PHILOSOPHY, GENERAL ARCHITECTURE,

AND PERFORMANCE OF THE CHESS CHIPS, WHICH PROVIDED MOST OF DEEP

BLUE'S COMPUTATIONAL POWER.

e o o o o o Creating the first World Champion-
class chess computer belongs among the old-
est challenges in computer science. When
World Chess Champion Garry Kasparov
resigned the last game of a six-game match
against IBM’s Deep Blue supercomputer on
11 May 1997, his loss marked achievement
of this goal.

The quest for a “chess machine” dates back
to 1769 when the Turk—with a human play-
er hidden inside—debuted in the Austrian
court. The arrival of electronic computers in
the late 1940s spurred new research interest
in chess programs. Early programs empha-
sized the emulation of the human chess
thought process. The Chess 4.5 program?! in
the late 1970s first demonstrated that an engi-
neering approach emphasizing hardware
speed might be more fruitful. Belle,? a special-
purpose hardwired chess machine from Bell
Laboratories, became the first national mas-
ter program in the early 1980s. Following the
same trend, Cray Blitz® running on a Cray
supercomputer, and Hitech,* another special-
purpose chess machine, became the top pro-
grams in the mid-1980s.

For the next 10 years or so, chess machines
based on a move generator of my design®*—

ChipTest (1986-1987), Deep Thought
(1988-1991), and Deep Thought Il (1992-
1995)—claimed spots as the top chess pro-
grams in the world. In 1988 the Deep
Thought team won the second Fredkin Inter-
mediate Prize for Grandmaster-level perfor-
mance for Deep Thought's 2650-plus rating
on the USCF’s scale over 25 consecutive
games.

Deep Blue’s 1996 debut in the first Kas-
parov versus Deep Blue match in Philadelphia
finally eclipsed Deep Thought Il. The 1996
version of Deep Blue used a new chess chip
designed at IBM Research over the course of
three years. A major revision of this chip par-
ticipated in the historic 1997 rematch
between Kasparov and Deep Blue. This arti-
cle concentrates mainly on the revised chip.

Task description and design philosophy

Good chess programmers pay a great deal of
attention to their programs’ speed. Initially,
we also emphasized search speed. One of my
original goals when we designed Deep
Thought was to see what would happen when
a Belle-class chess machine was speeded up,
say, a thousandfold.

Solving the “computer chess problem”
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involved winning a match against the human
World Chess Champion under regulation time
control. The games had to play out no faster
than three minutes per move. Both condi-
tions—using regulation time control and
winning a match—presented problems.

Under faster time controls, it’s much easier
for a computer to beat chess Grandmasters. A
computer first defeated a Grandmaster in
1977 in a blitz game, where players have five
minutes each for the entire game. It took 11
years before a computer finally defeated a
Grandmaster in a regulation game. More
recently, in 1988, number-two-ranked chess
player Vishwanathan Anand lost to a PC pro-
gram in blitz and shortened time games by a
score of 1.5 to 4.5. Yet, he defeated the same
program by a score of 1.5 to 0.5. Even world-
class Grandmasters have trouble avoiding sim-
ple mistakes in fast games.

The need to beat the World Champion in
a match introduced additional difficulties.
Two examples demonstrate the hurdle a com-
puter encounters in a match against a well-
prepared human opponent. In 1984 Cray
Blitz played a four-game match against Inter-
national Master David Levy. Despite the com-
parable playing strength, Levy successfully
exploited Cray Blitz's typical computer weak-
nesses and won by a 4-0 score. In 1996 Deep
Blue was even with Kasparov after four games
in the first match. Kasparov pinpointed Deep
Blue’s weaknesses and won the remaining two
games easily. Computation speed alone appar-
ently didn't suffice.

What caused the problems for Cray Blitz
and Deep Blue in the 1984 and 1996 match-
es? First, they played adaptable human oppo-
nents. Humans learn. Computers also “learn”
but not very well. Second, Cray Blitz in 1984
and, to a much lesser degree, Deep Blue in
1996 had serious gaps in their grasp of chess
knowledge, which a human opponent would
simply exploit.

What countermeasures would help? Our
team could put as much chess knowledge as
possible onto the chess chip and reduce the
number of serious knowledge gaps. We could
also make it as easy as possible to change the
chess chip’s playing behavior. These melded
into one mandate: to integrate the maximal-
ly possible amount of software-modifiable
chess knowledge onto the chess chip. The

integration level had to come first; speed
would be second.

Chess computers optimize precisely what
their programmers tell them to optimize.
Sometimes, this imperative leads the program
to exhibit strange behavior not seen in human
play—computers have no common sense. To
correct for the strange behavior, we further
have to include chess knowledge not covered
in chess books.

To deal with previously unknown comput-
er weaknesses showing up in a match, we
made the weights associated with the posi-
tional features individually adjustable from
software. This approach had the additional
advantage that | didn't need to know how to
play chess well, just whether a positional fea-
ture is important. An added hardware escape
hatch allowed an external circuit, such as an
FPGA (field-programmable gate array), to rec-
ognize new positional features and modify the
chess chip hardware operations. In the 1997
match, we didn’'t use the hardware escape
hatch, but we did change the weights for the
positional features between games.

Speed, though secondary, remained impor-
tant. Theoretically, we could increase the chip
speed dramatically using better technology
and speculative execution. The risk involved
with a speedier implementation seemed too
great in the limited time we had before the
1997 match.

The chess chips in 0.6-micron CMOS
searched 2 to 2.5 million chess positions per
second per chip. Recent design analysis
showed that speedup to about 30 million posi-
tions/s is possible with a 0.35-micron process
and a new design. Such a chip might make it
possible to defeat the World Chess Champi-
on with a desktop personal computer or even
a laptop. With a 0.18-micron process and
with, say, four chess processors per chip, we
could build a chess chip with higher sustained
computation speed than the 1997 Deep Blue.

Because of the Deep Blue system architec-
ture, we did not have to have the fastest possi-
ble chess chip. We based the Deep Blue system
on an IBM RS/6000 SP supercomputer,
which you could view as a collection of IBM
RS/6000 processors or workstations connect-
ed through a high-speed switching network.
Each processor in the system controlled up to
16 chess chips, distributed over two Micro
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Channel cards with eight chess chips on each
card. Since the RS/6000 SP supercomputer in
theory could have up to thousands of proces-
sors, we faced no serious limitation in the ulti-
mate system speed. The 1997 Deep Blue has
a 30-way machine with 30 RS/6000 proces-
sors (and 480 chess chips). There is at least one
RS/6000 SP with over 4,000 processors. If
willing to spend the money, you could build a
chess machine more than a hundred times
faster than the 1997 Deep Blue without resort-
ing to faster chess chips.

The chess chips provided enormous com-
putational power. On a general-purpose com-
puter, the computation done by the chess chip
for a single chess position requires up to
40,000 general-purpose instructions. At 2 to
2.5 million chess positions/s, one chess chip
operates as the equivalent of a 100-billion-
instruction/s supercomputer. Because this
speed was adequate, | did not spend much
time optimizing speed.

General architecture

The “Inside a chess machine” box describes
the basic operating principles of a chess pro-
gram. The following is Deep Blue specific.

System configuration

The 1997 version of Deep Blue included
480 chess chips. Since each chess chip could
search 2 to 2.5 million chess positions/s, the
“guaranteed not to exceed” system speed
reached about one billion chess positions per
second, or 40 tera operations. This assumes
that, on average, each chess position needs
40,000 general-purpose instructions to
process. The sustained speed reached 200 mil-
lion chess positions/s, or about 8 tera ops.
More software work could speed up the sys-
tem by a factor of two to four, but we decid-
ed to apply software work in the chess
knowledge area instead.

The search occurs in parallel on two levels,
one distributed over the IBM RS/6000 SP
switching network and the other over the
Micro Channel bus inside a workstation node.
For, say, a 12-ply search, one of the workstation
nodes—working as the master for the entire
system—uwould search the first four plies in
software. (A ply represents a move by either
player.) After four plies from the current game
position, the number of positions increases

about a thousand times. All 30 workstation
nodes, including the master node, then search
these new positions in software for four more
plies. The number of positions increases by
another thousand times. At this point, the
chess chips jump in and finish the last four
plies of the search, including quiescence search.

Partitioning the search into the (two-level)
software search and the hardware search per-
mitted a great deal of design flexibility, yet
maintained overall search speed. The software
handled less than one percent of the total posi-
tions searched, but it controlled about two
thirds of the search depth. The software por-
tion of the search can be arbitrarily selective
without slowing down the system.

The eight plies of software search performed
on the RS/6000 SP included many compli-
cated search extensions, which extended the
search deeper along lines the computer con-
sidered “forcing.” Some experimental evidence
suggested that the playing strength would
increase significantly if the search extensions
went all the way down to quiescence search.
Implementing the full software search exten-
sions on the chess chip seemed too risky a
proposition, given the design time constraint.
During the 1997 match, the software search
extended the search to about 40 plies along the
forcing lines, even though the nonextended
search reached only about 12 plies.

Chip overview

Each chess chip operates as a full-fledged
chess machine. Writing a chess program in sil-
icon offered design possibilities not available
in a software-based design. In particular, it
required reexamining the competing algo-
rithms’ time complexity. An algorithm unac-
ceptable in a software design might work
perfectly well in hardware. Either the algo-
rithm could be trivially parallelizable in hard-
ware without significant area penalty, or the
time-scaling factor might drop from the
instruction cycle time to a simple gate delay.
I’ll explain some examples of these hardware-
specific algorithms as they come up.

The chess chip divides into four parts: the
move generator, the smart-move stack, the
evaluation function, and the search control.
The smart-move stack further divides into a
regular move stack and a repetition detector.
Figure 1 shows the chess chip’s block diagram,



Inside a chess machine

Today’s chess programs and chess machines alike follow the
basic design Claude Shannon® outlined in 1949. Slate and Atkin’s
article on Chess 4.5! gave a classic example of the refinements
developed up to the late 1970s, and their article remains rele-
vant today—all modern chess automata are clones of Chess
4.5 in one way or another.

Shannon’s basic design uses a minimax search to decide
which move to play. The design assumes the existence of an
evaluation function that assigns a numerical value to a chess
position. Further, assume it assigns this numerical value from
the computer player’s viewpoint. The simplest evaluation func-
tion might return +1 if the computer wins, 0 if the position is a
draw, and —1 if the computer loses. If we have enough compu-
tational power, the simple {+1, 0, =1} evaluation function, in
combination with the minimax search, suffices for computing
the best move. We simply search all possible moves for both
sides until we reach positions with known outcomes.

For a position with the computer player to play and with all
the outcomes of the children positions known, the position’s
value would simply be max{values of children positions}. So if
one of the children positions is a win (+1) for the computer, the
position is also a win (+1) for the computer. For a position with
the computer’s opponent to play, the value of the position is
min{values of children positions}. If one of the children posi-
tions is a loss (—1) for the computer, the position is also a loss
(=1) for the computer, as the opponent would pick the best out-
come. By backing up the value according to this minimax rule,
eventually the values for all the positions after the computer’s
possible first moves become known. The computer would sim-
ply play the move that leads to the maximum backup value,
effectively “solving” the game.

Shannon observed that, in reality, chess was too complicat-
ed to solve this way. He proposed limiting how many moves
from the present position the computer may search, instead of
searching all the way to positions with known outcomes. This
limit could depend on the time and the computational power
available. With such an artificial limit, the simple {+1, 0, -1}
evaluation function no longer worked, as the positions reached
probably don’t have known outcomes. Shannon proposed using
a heuristic evaluation function: back up the heuristic values with
the minimax rules, then choose the move based on the mini-
maxed heuristic values. The heuristic evaluation function for a
position could rely on an estimate of the probability of winning,
drawing, or losing the game from that position. Chess programs
usually base the evaluation function roughly on how far ahead
or behind the computer has gotten in units of pawns or hun-
dredths of a pawn.

Shannon’s basic scheme divides naturally into three compo-
nents. They are the move generator that generates the chess
moves and allows the search to go forward in time, the evalu-

ation function that computes the values of future positions, and
the search control that goes backward in time and backs up the
future values to the present position. The Deep Blue chess chip
added a smart move stack to detect when the chess position
repeats.

By Chess 4.5, several important new developments had
occurred. Two proved particularly important in designing a hard-
ware chess move generator: quiescence search and the alpha-
beta pruning algorithm.

Also called capture
search in its simplest
form, quiescence search
extends search beyond
the original limit set by
Shannon’s scheme. For a
capture search, the side
to move gets the option
of making capturing
moves to gain material as
well as simply accepting
the position as is. If the
moving side selects the
capturing option, the
opponent gets the option
of making his own captures as well as accepting the new posi-
tion as is. The capture search (Figure A) can go on for many
moves until one side runs out of captures or until one side
decides to take the position as is.

Besides capturing moves, more general quiescence search
might include other types of forcing moves, say, checking moves.

Quiescence search has a major impact on a chess program’s
performance. An early measurement’ showed that a program
with quiescence search matched a program without quiescence
search but searching four plies (two moves each for white and
black) deeper. Quiescence search usually increases the number
of positions searched to the same depth by only two to four
times. Four more plies of search, on the other hand, usually
increase the number of positions by up to a thousand times. It's
no wonder all modern chess programs use some sort of quies-
cence search.

A program with quiescence search usually spends at least
half of its computation time there. Therefore, computation speed
for quiescence search proves critical for high-performance chess
computers. All successful hardware chess move generators can
generate at least the capturing moves quickly. The Deep Blue
chess chips can generate other forcing moves quickly as well.

The alpha-beta pruning algorithm appeared several years
after Shannon’s proposal. In reality, human players have used the
alpha-beta algorithm or its variants implicitly for ages.

continued on p. 74
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Figure A. The capture search takes place
beyond the regular search depth, until one
side runs out of captures or one side
decides to accept the position.
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continued from p.73

The alpha-beta algorithm relies on the observation that we
don’t really need to look at all of an opponent’s responses to our
bad moves—uwe just need one refutation. If the bad move
endangers (hangs) the queen, we just need to know that our
opponent can capture the queen on the next move. However, to
determine a valid refutation, we must examine all of our respons-
estoit. In the hung-queen example, we would need to examine
all of our responses to the queen’s capture to make sure that
our opponent indeed wins the queen without adequate penal-
ty. The same refutation principle applies to the opponent’s bad
moves, which also just need one refutation each. This idea of
refutations leads to an optimal search tree (see Figure B).

The search tree grows top down and left to right. An optimal

5 6 7 9

Figure B. Optimal search tree.

search tree orders the moves best-first, so the first move
searched for a given position is also the best move or at least a
refutation move for that position. In the figure, the leftmost
branch of the search tree also represents the principal varia-
tion—the hypothetical line where both sides play the best
moves. Thus, we must examine all responses to them—no refu-
tation to a best move exists. On the other hand, all the sibling
moves to a principal variation move are inferior and have at least
one refutation we must examine.

Arefutation line exhibits the repeated pattern of a tree level
with one refutation followed by a tree level of all responses.
This is the characteristic growth pattern of an alpha-beta search
tree. The algorithm lets a chess program search to roughly twice
the depth achievable with a minimax search when the move
ordering is close to best-first ordered.

For a program searching close to 40 billion positions for each
move—as the 1997 Deep Blue did—the alpha-beta algorithm
increases the search speed by up to 40 billion times. This
speedup, however, depends strongly on the move ordering’s
quality. In worst-first move ordering, the alpha-beta algorithm
searches a tree the same size as the minimax search tree. Obvi-
ously, the hardware move generator would need to provide a
decent approximation of the best-first ordering in any high-
performance chess-playing system.

Another development not usually cited but, to the best of my
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knowledge, first described by Slate and Atkin,* was lazy eval-
uation. Chess 4.5 avoided calculating the entire evaluation func-
tion when the material balance veered too far from the expected
value. For example, if either side has lost a queen while we're
expecting the position to be even, clearly there’s no reason for
a complete evaluation. The normal evaluation function, at least
in the case of Chess 4.5, could not possibly bring the evaluation
function anywhere close to even.

The Deep Blue chess chips use a more elaborate lazy evalu-
ation scheme, which disables lazy evaluation when an unusual
position occurs. In particular, if the number of pieces on the board
drops too low, sometimes a position could be drawn even with
one side up a full piece. A deep, brute-force search has a high per-
centage of off-balance leaf positions as a direct consequence of
searching all the moves, which naturally include some outra-
geously bad moves from either side. Typically, for a 12-ply brute-
force search, 60% to 90% of positions are off by more than a
pawn. Lazy evaluation can thus become quite effective.

Atthe leftin Figure C is a tree for a three-ply search from the
opening position. After three plies, the search reaches a leaf
position and enters the quiescence search region. Some chess
programs restrict quiescence search to capturing moves only.
Deep Blue includes checking moves and check evasion moves
in its quiescence search under certain conditions. This meant
adding special circuits to generate such moves quickly.

The flow chart on the right side of the Figure C gives a sim-
plified view of the processing done for each chess position
searched. Entering a chess position after making a move, the
chess machine processes two parallel paths: move generation
and decision evaluation.

The left path—the move generation path—first checks for
the legality of the opponent’s most recent move by checking
whether we can capture the opponent’s king. If so, the last move
the opponent made is illegal, and we should exit the position
and return to the parent position. If the last move is legal, we
start the move generation process. If we cannot find a move
(either no legal moves exist or, in the case of quiescence search,
no suitable forcing moves exist), we return to the parent posi-
tion, possibly with whatever score the evaluation function pro-
vides. If we do have a move, and the evaluation function says
we cannot exit yet, we continue the search to the next level.

The right path handles evaluation decisions. On entering the
position, we first check whether it’s a leaf position (usually by
checking whether we have reached sufficient search depth). If
not, we don’t need to do the evaluation function, and we merge
with the move generation path. If we have reached a leaf posi-
tion, we do a fast evaluation, which gives a quick and dirty esti-
mate of the positional score. If we like this estimate, we take it
and exit the position (with an early termination of the move gen-
eration path). If this estimate looks very bad for us, we merge
with the move generation path, hoping to find some forcing move
that wins something for us. If this estimate seems neither good
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Figure C. A chess chip’s basic search algorithm: search tree (left), flow chart (right).

nor bad, we compute the slow evaluation to find the
full evaluation for the position. If the full evaluation
satisfies us, we can cut off the search and return to

along with the connections between the
blocks. The chess chip’s die photo appears in
Figure 2.

The chip’s cycle time lies between 40 and
50 nanoseconds in a 0.6-micron, three-metal

the parent position. Otherwise, if the move generator
says a suitable forcing move exists that might win
something for us, we search forward.

layer, 5-V CMOS process. The average num-
ber of cycles per position searched is about 10;
power dissipation is about one watt. This
power consumption level falls within the

Move Move Repetition
generator stack detector
A A A
Y Y
Move bus (19 bits)
Y
Fast - l-—— [ Status
evaluation b < ( signal
. Alpha-beta |«—— Sl
Evaluation search
function trol L
Slow i contro —— | Control
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Figure 1 Block diagram of the chess chip.

Figure 2. Die photo of the chess chip.
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Figure 3. The find-victim transmitter. WTM: white to move, OP: operation, DIR mux: direc-
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power-handling limit of the Micro Channel
bus for an eight-chip board. The chip includes
about 1.5 million transistors, and the die mea-
sures 1.4 cm x 1.4 cm.

Move generator

The move generator, an 8 x 8 array of com-
binational logic, appears in the die photo as the
block at the upper right. A hardwired finite-
state machine controls move generation. The
move generator is more complicated than the
move generator used in Deep Thought,52°
which cannot generate the checking or check
evasion moves directly. The new move gener-
ator can generate capturing, checking, and
check evasion moves directly. The move gen-
erator used in the chess chips for the 1997 Deep
Blue could also generate attacking moves. This
1997 addition supports hardware pruning of
irrelevant chess moves at the last few plies of
positions immediately before quiescence search.
The basic move generation algorithm is the
same as in the Belle move generator.x

The combinational logic array is effective-
ly a silicon chessboard. Each cell in the array
has four main components: a find-victim
transmitter, a find-attacker transmitter, a
receiver, and a distributed arbiter. Each cell
contains a four-bit piece register that keeps
track of the type and color of the piece on the
corresponding square of the chessboard.

When enabled, the find-victim transmitter
(see Figure 3) radiates appropriate attacking
signals for the resident piece. If the square is
vacant, incoming attack signals from a ray
piece (a bishop, a rook, or a queen) pass
through the cell. Third-rank squares have
additional circuits to handle the two-square

ued victim. Although the
receiver has several different
operations, for now, assume
that it determines whether
some piece of opposing color
attacks the resident piece. If yes, the receiver
asserts a priority signal based on the piece type.
Since we want to find victims, the priority rises
for higher value pieces, with the queen high-
est, then rook, bishop, knight, pawn, and
empty square in descending order. The king
cannot become a victim, as then the position
is illegal.

The priority signals from all the squares
then go to the distributed arbiter, or the arbi-
tration network in Figure 4, to find the high-
est value victim to capture. For victims with
the same piece priority, additional square pri-
ority breaks the tie.

With the victim chosen, the find-attacker
cycle executes. The find-attacker transmitter
(see Figure 5) on the victim cell transmits
reverse attacking signals as if it were a super
piece—a piece that can move in reverse direc-
tions of any of the possible attacking pieces.

The receivers on all the squares then detect
whether an incoming reverse attacking signal
matches the resident piece’s type. If the resi-
dent piece is an appropriate attacker, the sys-
tem asserts a priority signal. Since we want to
use the lowest valued attacker first, the prior-
ity takes reverse order, with the pawn having
the highest priority. The priority signals then
go through the arbitration network, and, with
both the victim and the attacker computed,
we have the move.

You may have noticed that the move gen-
erator, as described, computes all the moves
implicitly even though it generates only one
move. In software, we would consider this
unacceptable. A hardware implementation
computes all the moves in parallel and incurs
no time penalty.
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searched for a given victim.
The other bit masks off fully
searched victims. This part of
the Belle design relies on a
direct translation of a software implementa-
tion, where bit masking proves efficient. A
VLSI-based design, however, offers a new
alternative. In the Deep Thought and Deep
Blue chess move generators, the last move
searched from the position is used to compute
the two-bit disable-mask. The last searched
move tells us the priority levels of the last vic-
tim piece and the last attacking piece. We can
use a modified decoder to mask off squares
with the same type of resident piece but lower
square priority. In software, the cost of recom-
puting the mask exceeds the cost of retrieving
it. But in hardware, the reverse holds true. The
disable-stack needs decoders to operate any-
way. The modified decoder operates at a speed
comparable to the disable-stack decoders and

Figure 5. The find-attacker transmitter.

takes less space. This method avoids using the
disable-stack, which probably needs to be at
least 64 levels deep.

The Deep Blue move generator supports
other move generation modes. When gener-
ating checking moves, it activates all the find-
victim transmitters as well as the opposing
king’s find-attacker transmitter. When both
sets of signals coincide on the same square, we
have a square from which a piece can check
the king. When ray signals align properly on
a square with a piece belonging to the mov-
ing side, the piece can give discovered checks
when it moves. A special move-generation
mode generates check-evasion moves. Anoth-
er mode generates moves used in hardware
move pruning. This last mode would cost too
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much in a pure software implementation.
The move generator also detects hung pieces
and measures the forcefulness of checks. We
can enable simple hardware search extensions
at the first level of quiescence search, and we
used these in the 1997 version of Deep Blue.
The move generator has about 52,400 gates.

Evaluation function

The entire evaluation function contains
about 66,000 gates, not including the RAMs
and ROM:s. In Figure 2’s die photo, all the
sub-blocks to the right of the move generator
belong to the evaluation function. The lower
sub-blocks provide fast evaluation. The upper
sub-blocks, the systolic evaluation array, the
pipelined evaluation RAMs, and the pipelined
postevaluation logic compute slow evaluation.
Fast evaluation, which computes in a single
cycle, contains all the easily computed major
evaluation terms with high values. Slow eval-

uation scans the chess board one column (file)
at a time systolically. Slow evaluation has a
latency of three cycles per column and takes
11 cycles to compute, given the chessboard’s
eight columns. Partitioning the evaluation
function into fast and slow evaluation proved
necessary to fit the design into a single chip.
Fortunately, we seldom need slow evaluation.

Fast evaluation contains four parts, as
depicted in Figure 6: the piece placement table,
the king-and-pawn array, the endgame logic
and ROMs, and the game phase control. The
piece placement table computes a position’s
incremental evaluation based on the average
values of the pieces on their resident squares.
The piece placement table actually uses three
RAMs, as shown in Figure 7. The game phase
control block contains a piece-count register
that counts the number of pieces of each type
left on the board for either player. For every
type of piece, the system also maintains an
XORed piece-location register. The piece-loca-
tion register contains the precise location of a
piece of a particular type if only one piece of
the right type remains. The piece-count regis-
ter addresses game phase control RAMs.

The game phase control RAMs produce
several control values. One of the control val-
ues is simply a bonus or penalty to be added
to the evaluation based on the material left on
the board. Good piece combinations get a
slight increase in evaluation. The other control
values serve are game phase dependent mul-
tipliers for other evaluation weights. The most
important game phase control value, the king-
safety relevance, tells the chess chip the impor-
tance of king safety. Another game phase
control value tells the chess chip how to adjust
the penalty for bad pawn structure and the
bonus for passed pawns.

The king-and-pawn array mainly detects
the “pawn can run” condition, where the king
can no longer catch up with an opponent’s
passed pawn. This means that the passed
pawn effectively becomes a queen if no other
piece remains, assuming no other pawn can
win the pawn race. The king-and-pawn array
recognizes other endgame features, including
some special rook-versus-passed-pawns con-
ditions and the presence of widely separated
passed pawns that can outrun the king.

The endgame logic and ROMs block main-
ly recognizes unusual endgame conditions that



lead to draw endings. This block contains ran-
dom logic to detect certain simple endings that _ w| King/pawn | o
are very likely drawn. This block also recognizes Plece counts [pae- vs. king
some simple fortress draws. Figure 8 shows the :
endgame ROM interface to the four endgame - K'”%’;"Ok |
ROMs. The biggest ROM is the king-and- Address king/pawn Je
pawn versus king ROM, which tells whether generators r— > 2332‘?”‘9
the position represents a win for the pawn side. XORed piece > gvg. - | Iree
Slow evaluation constitutes the single most I}gcationhs ~ king/pawn
complicated element on the chip, occupying pigggi‘)‘l’pe Kinglrookd
close to half of the chip core. At very shallow > pawnvs. |—»
depths, about half the positions searched king/pawn
require slow evaluation, but at realistic search
depths, the percentage drops to around 15  Figure 8. Endgame ROM interface.
percent. As shown in Figure 9, slow evalua-
tion has a three-stage pipeline, starting with
an 8 x 1 systolic array that runs for eight center. Each of these king safety evaluations
cycles, one cycle per file. Next are the 40-plus  takes into account the types of pieces attack-
synchronous RAMs, followed by an adder tree  ing, the soundness of the king’s shelter, pres-
that accumulates the results. The controller  ence of attacking pawns, color complex around
can stop the slow evaluation sequence on the  the king, square and ray control around the
fly to reduce power consumption. king, and so on. The final king safety evaluation
Slow evaluation computes values for chess is a weighted linear combination of the three
concepts such as square control, pins, x-rays,  king safety evaluations. The weights used in the
king safety, pawn structure, passed pawns, ray  linear combination are based on how easy it is
control, outposts, pawn majority, rook on the  to castle as well as the relative safety ranking of
Tth, blockade, restraint, color complex, trapped  the three destinations for the king.
pieces, development, and so on. This chess eval-
uation function probably is more complicated ~ Smart move stack
than anything ever described in the computer The smart move stack does not exist in the
chess literature. Asan example, look at the king  chess chip’s older release. The old chip con-
safety evaluation. Before the king castles, the  tains a regular move stack, but not the repeti-
system computes three king safety evaluations,  tion detector. The repetition detector contains
one for king-side castling, one for queen-side  a 32-entry circular buffer of the last 32 plies
castling, and the base value for staying in the  of moves. Using a hardware content-address-
R'T;:htty&e i Rank 8 > W
it sgnats 4 * Transformation
Piece reg. . A * Merge addeg:ciree —
righi?(?— > Rank 2 o
left signals ' To
. alpha-
o R T " s
. contro
Left-to-right scan Y Y
FSMs » Pin RAM |—> Adder tree -

Figure 9. The main slow evaluation flow.
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able memory algorithm,® the repetition detec-
tor maintains the numbers of pieces displaced
in each of the last 32 positions with respect to
the current board position. When the number
of pieces displaced equals zero, we have a
repeated position.

The repetition detector actually detects
more than just simple repetition. If there is
only one piece displaced, it also detects
whether there is a move that might lead to rep-
etition or near repetition. If the move is legal,
the side to move can at least claim a draw.

The repetition detector as implemented has
a time complexity of O(n), when n is the
depth of the repetition circular buffer. Soft-
ware usually implements repetition detection
by probing a hash table, which gives a time
complexity of O(1). The big difference here is
that the time constant for the hardware repe-
tition detector equals the gate delay instead of
the instruction cycle time. Also, normal soft-
ware repetition detectors cannot tell us that a
position is about to repeat.

The repetition detector uses about 20,000
gates.

Search control

The search control does not really imple-
ment the regular alpha-beta search algorithm.*
Rather, it implements a minimum-window
alpha-beta search algorithm.* This eliminates
the need for a value stack. A regular alpha-beta
search maintains two temporary variables, a
and 3, on a value stack. The relatively new min-
imum-window search can only tell us whether
the position searched is better or worse than a
single test value. In the regular alpha-beta
search, for moves not the best, we just need to
know whether they're better or worse (refuted,
then) than the current best move—precisely
the same function provided by the minimum-
window search. Of course, when the new move
is better than the current best move, we may
need to research the new move. We can either
use a regular alpha-beta search or repeat the
minimum-window search multiple times, rais-
ing the test value slightly each time. Efficien-
cy-wise, minimum-window-based search seems
about the same as the regular alpha-beta search.

The search control contains a 16-bit data
path and three state machines controlling sec-
tions of the data path. Two of the state
machines also control the move generator

indirectly. The data path uses multiple cas-
caded adder/subtractors to compute the con-
ditional flags that the search algorithm needs
in as few cycles as possible.

One unusual search control feature, a low-
pass digital filter, estimates the slow evalua-
tion function. The last observed slow
evaluation serves as the input to the low-pass
filter. This filter gives us the low-frequency
component of the slow evaluation function as
the search progresses. Since the slow evalua-
tion function does not change drastically for
closely related positions, its low-frequency
component offers a decent estimate. Without
this estimate, we would have to widen the
window used to determine whether to com-
pute the slow evaluation function. Conse-
quently, the search speed would suffer.

At the system level, the chip appears as a
32-bit device with a 17-bit address space.
Writing to some of the addresses initiates a
search from the current position on the chip,
usually for four or five plies beyond the soft-
ware search depth. This frees up the host
processor to perform housekeeping chores or
initiate a search on another chip.

Performance

We have used the chess chips in various sys-
tem configurations, from a single chip to mul-
tiple chips running on a single workstation
(the Deep Blue Jr.) and finally to the full Deep
Blue. The earliest games, in early 1997, used
asingle chip running at 70% clock speed and
at one-tenth to one-fifth efficiency as the result
of a hardware bug. This reduced the chip to
7% to 14% of its regular speed, or about the
same search speed as the fastest commercial
chess program on a Pentium Pro 180 MHz
PC. Two of the top commercial programs,
running on the Pentium Pro PC, served as
opponents in the early chip debugging ses-
sions. Of the 10 games played, the single-chip
program won all 10. This gives about a 95%
confidence level that a single chip, even at
reduced speed, was at least 200 points stronger
than the commercial chess programs in
machine-versus-machine play.

We played another 30 games with either the
single-chip version or Deep Blue Jr. against
the commercial chess programs. Of the 40
games total, the chess chip(s) lost two points
and scored 95 percent against the PC pro-



grams. This places the performance 300 to
500 rating points higher than the PC pro-
grams, depending on the rating formula used.
This rating has no bearing on the real playing
strength, as cursory examination showed seri-
ous positional weaknesses in the commercial
programs that the chess-chip systems exploit-
ed repeatedly.

The more interesting games pitted Deep
Blue Jr. against the Grandmasters working on
the project. The Grandmasters’ average rat-
ings were in the high 2500s on the interna-
tional scale. Deep Blue Jr. scored better than
a three-to-one ratio against them, which
placed it at 2700 plus, or among the top 10
players in the world.

The 1997 version of Deep Blue only played
six games, all against Kasparov. Deep Blue
won the match by the score of 3.5 to 2.5. Kas-
parov is rated around 2815, which placed
Deep Blue’s performance at about 2875.
However, we couldn't take this rating too seri-
ously because of the small sample size.

I am forming an independent start-up to cre-
ate a new chess chip for consumers. This
new chip could make it possible for a desktop
machine to defeat the World Champion in a
formal match as early as the year 2000. Fur-
ther down the road, the skills used to create
Deep Blue could be used to conquer other
games. One of the prime candidates is the
Japanese game of shogi, which has higher com-
putational complexity but also similar char-
acteristics. The difficult game of Go, or
Wei-chi, however, might still be well beyond a
computer’s reach in the near future. MIcRo
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