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Abstract—The problem of distributed Kalman filtering  regarding fusion of the measurements and covariance infor-
(DKF) for sensor networks is one of the most fundamental mation and b) Solving the two dynamic consensus problems
distributed estimation problems for scalable sensor fusion. This requires appropriateonsensus filter§i.e. a low-pass filter

paper addresses the DKF problem by reducing it to two . . . .
separate dynamic consensus problems in terms of weighted and a band-pass filter). A detailed discussion of consensus

measurements and inverse-covariance matrices. These to data filters that solve dynamic consensus problems and their
fusion problems are solved is a distributed way using low- stability properties is provided in [24], [29]. In particular,

pass and band-pass consensus filters. Consensus filters are disthe low-pass consensus filter in [24] plays a crucial role in
tributed algorithms that allow calculation of average-consensus both data fusion problems in part b).

of time-varying signals. The stability properties of consensus . S .
filters is discussed in a companion CDC ‘05 paper [24]. We The problem of decentralized Kalman filtering was first

show that a central Kalman filter for sensor networks can Solved by Speyer [31in 1979. It was independently resolved
be decomposed inton micro-Kalman filters with inputs that by Rao, Durrant-Whyte, and Sheen in [25]. Both methods
are provided by two types of consensus filters. This network require a complete network with all-to-all links. This so-
of micro-Kalman filters collectively are capable to provide an lution is not scalable for large-scale sensor networks due
estimate of the state of the process (under observation) that . 9 L . .

is identical to the estimate obtained by a central Kalman to its O(n*) communication Complt'aXItyn( is the r.1um'ber
filter given that all nodes agree on two central sums. Later, Of sensors/nodes). Thus, decentralized Kalman filtering and
we demonstrate that our consensus filters can approximate distributed Kalman filtering are two separate problems. In
these sums and that gives an approximate distributed Kalman the |atter one, each node only is allowed to communicate

fitering algorithm. A detailed account of the computational ) its neighbors on a grapi that is connected but rather
and communication architecture of the algorithm is provided. sparse

Simulation results are presented for a sensor network with 200 ) )
nodes and more than 1000 links. Consensus problems [23], [27] and their special cases have

Index Terms—sensor networks, distributed Kalman filter, been the subject of intensive studies by several researchers
sensor fusion, consensus filters, dynamic average-consensus{17], [21], [12], [18], [26], [32], [33] in the context of forma-
networked embedded systems, random networks tion control, self-alignment, and flocking [20] in networked
dynamic systems.

An in-depth comparison between the distributed Kalman

Sensor networks and intelligent arrays of micro-sensofgter introduced here and the existing decentralized sensor
have broad range of applications including information gatffusion algorithms both with and without fusion centers in
ering and data fusion for modeling an environment, surveif34), [28], [6], [11] is the subject of ongoing investigation.
lance, active monitoring of forests & agricultural lands, An outline of the paper is as follows: Section Il provides
health-care applications, collaborative information procesgpme background on the information form of Kalman filter.
ing, and control of smart materials with embedded sensogsection Il contains our first main result on decomposition
[7], [13], [16], [4], [1], [9], [5], [19], [15], [3], [33], [22],  of a Kalman filter inton collaborative micro-Kalman filters
[8]. with local communication. Consensus filters are described

The most fundamental distributed estimation problem fofy Section IV. Simulation results for a sensor network with
sensor networks is to develop a distributed algorithm [14] fop00 nodes and over 1000 links are presented in Section V.
Kalman filtering [2] A scheme for approximate distributed Fina”y’ Conc|uding remarks are made in Section VI.

Kalman filtering (DKF) was proposed in [30] based on reach-

ing anaverage-consensuyg3], [27], [21]. The work in [30] II. KALMAN FILTER: INEORMATION FORM

only suggests a scalable scheme to tackle the DKF problem . . )
in a special case of full-information and does not contain Consider a sensor network with sensors that are in-
the sufficient analytical results and distributed algorithmgerc_onneCted via an OVe”aY ne_twofR (e.9. a connected
necessary to implement a distributed Kalman filter. undirected graph as shown in Fig. 1).

This paper provides the essential distributed algorithms, . )

. . The original work by Speyer was brought up to the attention of the author
and analyt'cal guarantees necessary to establish: a) The DN:J. Shamma and has partially influenced the choice of the information
problem can be reduced to tvdynamic consensywoblems form of the Kalman filter as well as the notation used in the paper.

I. INTRODUCTION



that the network of micro-Kalman filtergollectively in a
distributed way calculate the same state estimiatdtained
via application of a central Kalman filter located at a sink
node (e.g. for a moving object in a plape= 2, m = 4 and
n > 1).

Let us assume that there are sensors withp x m
measurement matrice$; and sensing model:

zi(k) = Hiz(k) + vi(k)

Thus, defining the central measurement, observation noise,
and observation matrix as

ze = col(z1,22,...,20), (11)
ve = col(vy,...,vn), (12)
Fig. 1. A sensor network with = 200 nodes and = 1074 links. H. = [Hy;Hy; - Hy, (13)

where H,. is a column block matrix. We get
This section describes the so-calledormation formof
the Kalman filter (IKF) according to [2], [31]. ze(k) = Hew(k) + v (k) (14)
Let us describe the model of a process (e.g. a physicghere the subscript “c’ means “central”. Let
phenomenon or a moving object) and the sensing model of

the IKF as follows: R.=diagR1, R, ..., Ry)
Tpt1 = Apxk + Brwg;  xo 1 denote the covariance af. (i.e. we assume;’s are uncor-
2z = Hpzp + v related). We have
where z;, € R™ represents the vector gf-dimensional M= (P+ HR:'H,)™

measurements obtained viasensorsyw;, andwv;, are white
Gaussian noise (WGN), and, € R™ denotes the initial and

state of the process that is a Gaussian random variable. Here K.=MH.R".
is the information regarding the statistics of these variables: ) )
Thus, thestate propagatiorequation can be expressed as
E(wpw)) = O, E(viv)) = Ryd 2
(wiwy) Qk_kl (vkvy) Okt (2) b= it Ko(e— Ho) (15)
ro = N(Zo, P). 3) 1 ' p—1
= T+ M(HR; 2.— H.R_, H.T) (16)
Given the measurements, = {z,z21,...,2,}, the state o ) ) )
estimatescan be expressed as Defining the followingm x m average inverse-covariance
matrix
ir = EzklZs),7n = E(ve| Zi_1), 4 1 1< _
Tk (ij| k?) Tk (J;k| k 1) ( ) S: *HéRc_chzsz;Rl lHi (17)
P, = Ypp—1, Mk =2 (5) n n =

where¥; . andX, ,—; denote thestate covariancenatri- and them-vector of average measurements
ces and their inverses are known asitifermation matrices

Note that¥,_, = Fy. Here are the Kalman filter iterations yi = HIR 'z, y = 1 th (18)
in the information form: n-4
M;' = P;'+ HLR'H, (6) one gets the Kalman state update equation pK& as
K, = MH.R;" ™ & =7+ M,(y— S) (19)
T = I+ Kp(z — Hpooy) ®)

with a micro-Kalman gain ofM,, = nM, measurement

— / /
Prvr = ApMpAy + BrQi By, ©) consensugy, and inverse-covariance consensus values of
Tpe1 = Aply (10)  The expression fon/, can be stated as follows:
[1l. DISTRIBUTED KALMAN FILTER AND MICRO-KFs M, =nM = ((nP)~' +5)~1. (20)

Our first objective is to show how the information form . .
: . Denoting P, = nP and @, = n(@, we obtain an update
of a central Kalman filter for a sensor network observing a . : . i
. ) . . . equation of dimensiom: x m for a uKF:
process of dimensiom: with an np-dimensional measure-
ment vectorz, can be equivalently expressed ¢gonsensus P}j = AM,A' + BQ,B'. (21)
form usingn micro-Kalman filterguKF) with p-dimensional
measurement vectors which are embedded in each sensor Sahe iteration numbers are dropped whenever no confusions occur.



Based on the above argument, we have the followingence analysis of the collective dynamics of the perturbed
decomposition theorem for Kalman filtering in sensor netuKF equations is the subject of future research.

works:
IV. CONSENSUSFILTERS

Theorem 1. (distributed Kalman filter) Consider a sensor  Theorem 1 does not amount to the solution of the DKF
network withn sensors and topolog§ that is a connected problem. So far, we have only managed to show that if
graph observing a process of dimensienusingp < m o dynamic consensus problems $hand y are solved,
sensor measurements. Assume the nodes of the network sgig, 5 distributed algorithm for Kalman filtering in sensor
two consensus problems that allow them to calculate averag@yorks exists. The crucial part of solving the DKF problem
inverse-covariances' and average measuremenfsat every g golving its required dynamic consensus problems which
iteration k. Then, every node of the network can calculatg sve peen addressed in [24] and partially in [29].

the state estimate at iteration k using the update equations  \we state the distributed algorithms for three consensus

of its micro-Kalman filter (oruKF iterations) filters: a low-pass filter, a high-pass filter, and a resulting
M, = ( P/fl +8)7, (22) bano!-pass filter. Let us denote_the adjacency and !_aplacian
i = 74 M, (y— Sz), 23) matn: [1OF]) of Gcby A and LF._Itd|a(gé(?1[)2;];4, I_retspe:j:tlveiy.
L , , « Low-Pass Consensus Filter (CF;, : Let ¢; denote
Pro= AJA\/[“A +BQuB, (24) the m-dimensional state of node and u; denote the
t = Az (25) m-dimensional input of node. Then, the following

This gives an estimate identical to the one obtained via a dynamic consensus algorithm

central Kalman filter. G = Z (¢j — a:) + Z (u; — q;) (30)
Remark1. The gain M, of the micro-Kalman filter has JEN; JEN:U{i}

O(m?) elements, whereas the Kalman gdinof the central that can be equivalently expressed as

Kalman filter hasO(m?n) elements. Thus, the calculations . . .

of the central KF require manipulation of large matrices G=—Lqg—Lu+(In+ A)(u—x) (31)
which is not computationally feasible. with ¢ = col(qy, ..., qn), A= A®1I,, andl = L®1,,
Remark2. We assume all nodes knawor solve a consensus gives a low-pass consensus filter with a MIMO transfer
problem to calculate:. This is necessary for calculation of function

Qu = ’IlQ

Hyp(s)=[(s+ 1), + A+ L)"' (I, + A 32
Considering that botly andy aretime-varyingquantities, w(®) = (s +1) ) ) G2

one need to solve two dynamic consensus problems that from inputu to outputz.

allow asymptotic tracking of the values &f(k) and y(k) This filter is used for fusion of the measurements that
[30]. The nature of these two dynamic consensus problem calculatesj; by applying the algorithm tdd/R; ' 2; as
differ in nature. Consensus ig(k) requires sensor fusion the input of node.

for noisy measurementg that can be solved using a newly

found distributed low-pass consensus filtgiven in [24]. « High-Pass Consensus Filter (CF,, [24], [29]): Let p;
The consensus regarding the inverse-covariance matrices for denote then-dimensional state of nodeandu; denote
calculation of S requires aband-pass consensus filtéat the m-dimensional input of node Then, the following

will be described in the next section. Neither problems can  dynamic consensus algorithm
be solved using a high-pass consensus filter alone. . .

Based on thg resu?ts Iian [24], the nodes of a network that b= Z (pj = pi) + s (33)
uses a consensus filter only reacheatonsensus (for non- JEN:
static cases). Meaning that all agents reach a state that is that can be equivalently expressed as
in a closed-ball of radius < 1 around the group decision ¢ = —le— i (34)

. . 7
value [24]. This means that practically every node calculates
its approximate consensus valugsand §; that all belong p = etu (35)
to small neighborhoods aroun and y, respectively. This with . = L ® I,,,. This gives a high-pass consensus
gives the following state and covariance update equations for filter with an improper MIMO transfer function
theith uKF:

A Hpy(s) = (sl + ﬁ)’ls (36)
M; = (B +5)7 (26) .
b = Z4 M — 87 27 from input v to outputz that becomed,, ass — oc.
f = o :(yz R Zx)/’ @7) This filter apparently propagates high-frequency noise
P = AM;A + BQ.B', (28) and by itself is inadequate for sensor fusion.
Tt = Az, (29) » Band-Pass Consensus Filter (Cf;): This distributed

with P, = nP. This is the perturbed version of the exact filter can be defined as

iterations of theuKF equation in Theorem 1. The conver- Hy,(s) = Hip(s)Hpp(s) (37)



that can be equivalently stated in the form of a dynamic

consensus algorithm Nodei - e e e e e e e e e e = |
. 5 - 1
e; = —Le,- — Luq;, (38) Sensor I :
Dat: Low-Pass
pi = € t+u, (39) LI—P Consensus Filter=> I
. | I
G = Y (G-a)+ Y. (bj—a) (40) | Micro | | 2
JEN; JEN;U{i} 1 Kalman | X
. . | Filt T
with a state(e;, ¢;) € R?*™, input u;, and outputg;. I (;K; I
This filter is used for inverse-covariance consensus that Covariance | 5 1 pacs I
calculatesS; column-wise for node by applying the Data__1 | Consensus Filter 1
filter on columns ofH/R; ' H; as the inputs of node : I
The matrix version of this filter can takH{Ri_lHi as I :
the input. - TmomTmTmoss-mss-===-
Fig. 2 shows the architecture of each node of the sensor ()
network for distributed Kalman filtering. Note thebnsensus .
filtering is performed with the same frequency as Kalman fil- Nodei | = = = = — e e - - A
tering. This is a unique feature that completely distinguishes Sensor : |
our algorithm with some related work in [30], [33]. Data ) | o Pass L s :
1
. I A
V. SIMULATION RESULTS ™ oere | -
alman
In this section, we use our consensus filters jointly with | Filter =
the update equation of the micro-Kalman filter of each node gorariaqce Band-Pass () :
to obtain an estimate of the position of a moving object in % Consensus Filter —, |
R? that (approximately) goes in circles. The output matrix g :
is H; = I, and the state of the process dynamics2is L ___ -1
dimensional corresponding to the continuous-time system Nodej | = mm = = = = S -
1
1
. S 1
T = Apx + Bow ;Zl::or : Ve Low-Pa;s.' :
with 0 —1 _rI} Micro :-’X‘:
= = | Kalman
Ao { 1 0 } » Bo =1z | Filter -{—*
. - (KF) 1
The network has: = 200 sensors with a topology shown IC)"fa““’l“ Band-Pass |
H H H . L‘—P Consensus Filter = 1
in Fig. 1. We use the following data: :' |
1
R; =100(i2) Iy, Q = 25, Py = Iy, xo = (15,—10)". e :
with a step-time ofl’ = 0.02 (sec). Figs 3 and 4 and show (b)

the e.Stlmate obtained by nodés= 10.0’25' App.arently, Fig. 2. Node and network architecture for distributed Kalman filtering: (a)
the distributed and central Kalman filters provide almosirchitecture of consensus filters an{F of a node and (b) communication

identical estimates. Of course, the difference iséalability patterns between low-pass/band-pass consensus filters of neighboring nodes.
of the DKF. In Fig. 5, the consecutive snapshots of estimates

of all nodes are shown. The estimates appear as a cohesive

set of particles that move around the location of the object.

VI. CONCLUSIONS consensus filters is discussed in a companion paper [24]. We

The importance of distributed Kalman filtering (DKF) established that a central Kalman filter for sensor networks
for sensor networks was discussed. We addressed the DK&n be decomposed into micro-Kalman filters with inputs
problem by reducing it to two separate dynamic consenstisat are provided by two consensus filters. This network of
problems in terms of weighted measurements and inversaicro-Kalman filters was able to collaboratively provide an
covariance matrices that can be viewed as two data fusi@stimate of the state of the observed process. This estimate is
problems with different natures. Both data fusion problemglentical to the estimate obtained by a central Kalman filter
were solved is a distributed way using consensus filters. Cogiven that all nodes agree on two central sums. Consensus
sensus filters are distributed algorithms that allow calculatidiiiters can approximate these sums and that gives an ap-
of average-consensus of time-varying signals. We employguaoximate distributed Kalman filtering algorithm for sensor
a low-pass consensus filter for fusion of the measurementstworks. Computational and communication architecture of
and a band-pass consensus filter for fusion of the inverstte algorithm was discussed. Simulation results are presented
covariance matrices. Note that the stability properties dbr a sensor network with 200 nodes and 1074 links.
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Fig. 4. Distributed position estimation for a moving object by node 25:

100: (@) DKF vs. KF (DKF is the smooth curve in red) and (b) Distributed(a) DKF vs. KF (DKF is the smooth curve in red) and (b) Distributed
Kalman filter estimate (in red) vs. the actual position of the object (in blue)Kalman filter estimate (in red) vs. the actual position of the object (in blue).
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Fig. 5. Snapshots of the estimates of all nodes regarding the position of a

30

20+

-20 0

20

40

-20 0

40

-20 0

20

40

-20 0

X

(d)

moving object (a red dot).

20

40



