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Critical Evaluation of Extended Kalman Filtering and
Moving-Horizon Estimation

Eric L. Haseltine and James B. Rawlings*

Department of Chemical and Biological Engineering, University of Wisconsin-Madison,
1415 Engineering Drive, Madison, Wisconsin 53706-1607

State estimators for physical processes often must address different challenges, including
nonlinear dynamics, states subject to hard constraints (e.g., nonnegative concentrations), and
local optima. In this article, we compare the performance of two such estimators: the extended
Kalman filter (EKF) and moving-horizon estimation (MHE). We outline conditions that lead to
the formation of multiple optima in the estimator for systems tending to a steady state and
propose tests that determine when these conditions hold for chemical reaction networks. Several
simulation examples demonstrate estimation failure in the EKF, even in the absence of plant-
model mismatch. We then examine the role that constraints play in determining the performance
on these examples of MHE employing local optimization and a “smoothing” update for the arrival
cost. This implementation of MHE represents a feasible, on-line alternative to the EKF for
industrial practitioners. In each example, the two estimators are given exactly the same
information, namely, tuning parameters, model, and measurements; yet MHE consistently
provides improved state estimation and greater robustness to both poor guesses of the initial
state and tuning parameters in comparison to the EKF. The only price of this improvement is
the greater computational expense required to solve the MHE optimization.

1. Introduction

It is well established that the Kalman filter is the
optimal state estimator for unconstrained, linear sys-
tems subject to normally distributed state and measure-
ment noise. Many physical systems, however, exhibit
nonlinear dynamics and have states subject to hard
constraints, such as nonnegative concentrations or
pressures. In these cases, Kalman filtering is no longer
directly applicable. As a result, many different types of
nonlinear state estimators have been proposed; So-
roush1 provides a review of many of these methods. We
focus our attention on techniques that formulate state
estimation in a probabilistic setting, that is, both the
model and the measurement are potentially subject to
random disturbances. Such techniques include the
extended Kalman filter, moving-horizon estimation,
Bayesian estimation, and Gaussian sum approxima-
tions. In this probabilistic setting, state estimators
attempt to reconstruct the a posteriori distribution
p(xT|y0,...,yT), which is the probability that the state of
the system is xT given measurements y0, ..., yT. The
question arises, then, as to which point estimate should
be used for the state estimate. Two obvious choices for
the point estimate are the mean and the mode of the a
posteriori distribution. For nonsymmetric distributions,
Figure 1a demonstrates that these estimates are gener-
ally different. Additionally, if this distribution is mul-
timodal, as is Figure 1b, then the mean might place the
state estimate in a region of low probability. Clearly,
the mode is a more desirable estimate in such cases.

For nonlinear systems, the a posteriori distribution
is generally nonsymmetric and potentially multimodal.
In this paper, we outline conditions that lead to the
formation of multiple modes in the a posteriori distribu-
tion for systems tending to a steady state and construct

examples that generate multiple modes. To the best of
our knowledge, only Alspach and Sorenson (and refer-
ences contained therein);2 Gordon, Salmond, and Smith;3
and Chaves and Sontag4 have proposed examples in
which multiple modes arise in the a posteriori distribu-
tion, but these contributions do not examine conditions
leading to their formation. Gaussian sum approxima-
tions2 offer one method for addressing the formation of
multiple modes in the a posteriori distribution for
unconstrained systems. Current Bayesian estimation
methods3,5-7 offer another means for addressing mul-
tiple modes, but these methods propose estimation of
the mean rather than the mode. Gordon, Salmond, and
Smith3 suggest using density estimation techniques to
estimate the mode of the a posteriori distribution, but
Silverman8 demonstrates via a numerical example that
the number of samples required to reconstruct a point
estimate within a given relative error increases expo-
nentially with the dimensionality of the state. In this
paper, we examine the estimation properties of both the
extended Kalman filter and moving-horizon estimation
through simulation. The extended Kalman filter as-
sumes that the a posteriori distribution is normally
distributed (unimodal); hence, the mean and the mode
of the distribution are equivalent. Moving-horizon es-
timation seeks to reconstruct the mode of the a poste-
riori distribution via constrained optimization, but
current implementations employ local optimizations
that offer no means of distinguishing between multiple
modes of this distribution. The simulation examples
thus provide a means of benchmarking these current
industrially implementable technologies.

In this paper, we first formulate the estimation
problem of interest. Next, we briefly review pertinent
extended Kalman filtering and moving-horizon estima-
tion literature. Then, we present several motivating
chemical engineering examples in which the accurate
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incorporation of both state constraints and the nonlinear
model are paramount for obtaining accurate estimates.

2. Formulation and Solution of the Estimation
Problem

In chemical engineering systems, most processes
consist of continuous processes with discrete measure-
ments. Therefore, for this work, we choose the discrete
stochastic system model

in which xk is the state of the system at time tk; uk is
the system input at time tk {assumes a zeroth-order hold
over the interval [tk, tk+1)}; wk is an N(0,Qk) noise
[N(m,P) denotes a normal distribution with mean m and
covariance P]; F(xk,uk) is the solution to a first-
principles, differential equation model; G(xk,uk) is a full
column rank matrix (this condition is required for
uniqueness of the a posteriori distribution defined in
section 2.2); yk is the system measurement at time tk;
hk is a (possibly) nonlinear function of xk at time tk; and
vk is an N(0,Rk) noise.

We believe that, by appropriately choosing both a
first-principles model and a noise structure, we can
identify both the model parameters (or a reduced set of
these parameters) and the state and measurement noise
covariance structures. Such identification will proceed
as follows: (1) Assuming a noise structure, identify the
model parameters. (2) Assuming a model, model pa-
rameters, and a noise structure, identify the covariance
structures.

Here, we propose performing replicate experiments
and measurements to estimate moments of the desired
quantity (in general, the mean of the state or covariance
structure) and then fitting the model parameters by
comparing the estimated moments to those recon-
structed from Monte Carlo simulation of eq 1. This
identification procedure is an area of current research
beyond the scope of this paper, but we maintain that
such a procedure will yield a rough, potentially biased,
yet useful stochastic model from the system measure-
ments.

As discussed in the Introduction, state estimators
given multimodal a posteriori distributions should solve
the problem

Here, we assume that the input sequence u0, ..., uT is
known exactly. Equation 2 is referred to as the maxi-
mum a posteriori estimate. In the special case that the
system is not constrained and that, in eq 1, (1) F(xk,uk)
is linear with respect to xk, (2) h(xk) is linear with respect
to xk, and (3) G(xk,uk) is a constant matrix, the maximum
a posteriori estimator is the Kalman filter, whose well-
known recursive form is conducive for online implemen-
tation. For the more general formulation given by eq 1,
online solution of the exact maximum a posteriori
estimate is impractical, and approximations are used
to obtain state estimates in real time. We consider two
of these approximations, the extended Kalman filter and
moving-horizon estimation, next.

2.1. Extended Kalman Filtering. The extended
Kalman filter, or EKF, is one approximation for calcu-
lating eq 2. The EKF linearizes the nonlinear system
and then applies the Kalman filter (the optimal, un-
constrained, linear state estimator) to obtain the state
estimates. The tacit approximation here is that the
process statistics are multivariate normal distributions.
This method has garnered the most interest because of
its relative simplicity and demonstrated efficacy in
handling nonlinear systems. Examples of implementa-
tions include estimation for the production of silicon/
germanium alloy films,9 polymerization reactions,10 and
fermentation processes.11 However, the EKF is at best
an ad hoc solution to a difficult problem, and hence,
there exist many barriers to the practical implementa-
tion of EKFs (see, for example, Wilson, Agarwal, and
Rippin12). Some of these problems include the inability
to accurately incorporate physical state constraints and
poor use of the nonlinear model.

Until recently, few properties regarding the stability
and convergence of the EKF have been proven. Recent
publications present bounded estimation error and
exponential convergence arguments for the continuous
and discrete EKF forms given detectability, small initial
estimation error, small noise terms, and perfect cor-
respondence between the plant and the model.13-15

Figure 1. Comparison of potential point estimates (mean and mode) for (a) unimodal and (b) bimodal a posteriori distributions.

xk+1 ) F(xk,uk) + G(xk,uk)wk (1a)

yk ) h(xk) + vk (1b)

xT
+ ) arg max

xT
p(xT|y0,...yT) (2)
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However, depending on the system, the bounds on initial
estimation error and noise terms might be unreasonably
small. Also, initial estimation error might result in
bounded estimate error but not exponential conver-
gence, as illustrated by Chaves and Sontag.4 We use the
discrete-time EKF (see Stengel16 for a summary of the
algorithm) to generate the results in this paper.

2.2. Moving-Horizon Estimation. One alternative
to solving the maximum a posteriori estimate is to maxi-
mize a joint probability for a trajectory of state values, i.e.

Equation 3 is the full-information estimate. The com-
putational burden of calculating this estimate increases
as more measurements come online. To bound this
burden, one can fix the estimation horizon

Moving-horizon estimation, or MHE, corresponds prob-
abilistically to eq 4 and is equivalent numerically to a
constrained, nonlinear optimization problem.17,18 We
note that the restrictive assumptions of normally dis-
tributed noises and the model given by eq 1 are not
required by MHE. If the matrix G in eq 1 is not a
function of the state xk, then these assumptions merely
lead to a convenient least-squares optimization as
demonstrated by Jazwinski.19

From a theoretical perspective, Tyler and Morari
examined the feasibility of constrained MHE for linear,
state-space models.20 Rao et al. showed that constrained
MHE is an asymptotically stable observer in a nonlinear
deterministic modeling framework.21,22 These works also
provide a nice overview of current MHE research.
Furthermore, recent advances in numerical computation
have allowed real-time implementation of MHE strate-
gies for the local optimization of the MHE problem.23,24

A method for incorporating the effect of past data
outside the current estimation horizon (also known as
the arrival cost), though, remains an open issue of MHE.

Rao, Rawlings, and Lee25 explored estimating this cost
for constrained linear systems with the corresponding
cost for an unconstrained linear system. More specifi-
cally, they examinedthe following two schemes: (1) a
“filtering” scheme that penalizes deviations of the initial
estimate in the horizon from an a priori estimate, and
(2) a “smoothing” scheme that penalizes deviations of
the trajectory of states in the estimation horizon from
an a priori estimate.

For unconstrained, linear systems, the MHE optimi-
zation collapses to the Kalman filter for both of these
schemes. Rao21 further considered several optimal and
suboptimal approaches for estimating the arrival cost
via a series of optimizations. These approaches stem
from the property that, in a deterministic setting (no
state or measurement noise), MHE is an asymptotically
stable observer as long as the arrival cost is under-
bounded. One simple way of estimating the arrival cost,
therefore, is to implement a uniform prior. Computa-
tionally, a uniform prior corresponds to not penalizing
deviations of the initial state from the a priori estimate.

For nonlinear systems, Tenny and Rawlings24 esti-
mated the arrival cost by approximating the con-
strained, nonlinear system as an unconstrained, linear
time-varying system and applying the corresponding

filtering and smoothing schemes. They concluded that
the smoothing scheme is superior to the filtering scheme
because the filtering scheme induces oscillations in the
state estimates through the unnecessary propagation
of initial error. Here, the tacit assumption is that the
probability distribution around the optimal estimate is
a multivariate normal. The problem with this assump-
tion is that nonlinear systems can exhibit multiple
peaks (i.e., local optima) in this probability distribution.
Haseltine and Rawlings26 demonstrated that approxi-
mating the arrival cost with the smoothing scheme in
the presence of multiple local optima can skew all future
estimates. They conjectured that, if global optimization
is implementable in real time, approximating the arrival
cost with a uniform prior and making the estimation
horizon reasonably long is preferable to using an ap-
proximate multivariate normal arrival cost because of
the latter’s biasing effect on the state estimates.

We now seek to demonstrate by simulation examples
that MHE is a useful and practical tool for state
estimation of chemical process systems. We examine the
performance of MHE with local optimization and an
arrival cost approximated with a smoothing update. For
further details regarding this MHE scheme, we refer
the interested reader to Tenny and Rawlings24 and note
that this code is freely available as part of the NMPC
toolbox (http://www.che.wisc.edu/∼tenny/nmpc/). Cur-
rently, this particular MHE configuration represents a
computationally feasible implementation for an indus-
trial setting.

3. Examples of EKF Failure
In this section, we outline the conditions that generate

EKF failure in two classes of chemical reactors. We then
present several examples that demonstrate failure of
the EKF as an estimator.

If there is no plant-model mismatch, measurement
noise, or state noise, one definition of estimator failure is

for some ε > 0 (|x| is a norm of x). That is, the estimator
is unable to reconstruct the true state no matter how
many measurements it processes. For stable systems,
i.e., those systems tending to a steady state, we expect
that

in the same limit as eq 5. We now examine the discrete
EKF given such conditions. The following equations
govern the propagation and update steps:16

in which

{x0
/, ..., xT} ) arg max

x0,...,xT
p(x0,...,xT|y0,...,yT) (3)

{xT-N+1, ..., x0} ) arg max
xT-N+1,...,xT

p(xT-N+1,...,xT|y0,...,yT)

(4)

lim
kf∞

|x̂k|k - xk| > ε (5)

x̂k|k ) x̂k-1|k-1 (6)

x̂k|k-1 ) F(x̂k-1|k-1,uk-1,wk-1) (7a)

Pk|k-1 ) Ak-1Pk-1|k-1 Ak-1
T + Gk-1Qk-1 Gk-1

T

(7b)

x̂k|k ) x̂k|k-1 + Lk[yk - h(x̂k|k-1)] (7c)

Pk|k ) Pk|k-1 - LkCkPk|k-1 (7d)

Lk ) Pk|k-1 Ck
T[CkPk|k-1 Ck

T + Rk]
-1 (7e)
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At steady state, the following equalities hold:

Combining expressions 7 and 9 yields

If both eqs 5 and 10 hold, then the EKF has failed as
an estimator.

One solution to eq 10 results when multiple steady
states satisfy the steady-state measurement. This phe-
nomenon corresponds to the case that

We would expect the EKF to fail when (1) the system
model and measurement are such that multiple states
satisfy the steady-state measurement and (2) the esti-
mator is given a poor initial guess of the state. Condition
2 does not imply that the system is unobservable;
rather, this condition states that the state cannot be
uniquely determined from solely the steady-state mea-
surement. For such a case to be observable, the process
dynamics must make the system observable. Condition
2 implies that the poor initial guess skews the estimates
(x̂k|k’s) toward a region of attraction not corresponding
to the actual state (xk’s).

3.1. Chemical Reaction Systems. For well-mixed
systems consisting of reaction networks, the nonlinear-
ity of the system must be present at steady state so that
multiple steady states can satisfy the steady-state
measurement. Consequently, we must analyze the
structure of the stoichiometric matrix in combination
with the number (and type) of measurements to deter-
mine whether multiple steady states can satisfy the
steady-state measurement. Define the following quanti-
ties:

ν, the stoichiometric matrix of size r × s, in which r
is the number of reactions and s is the number of species

F, the rank of ν (F ) r if there are no linearly
dependent reactions)

η, the nullity of ν
n, the number of measurements
nm, the number of measurements that can be written

as a linear combination of states [e.g., y ) x1 + x2 and
(x1 + x2)y ) x1]

For batch reactors, conservation laws yield a model
of the form

in which x is an s-vector containing the concentration of
each species in the reactor, VR is the volume of the reac-
tor, and r(x) is an r-vector containing the reaction rates.

For this system, F specifies the number of independent
equations at equilibrium. In general, we will require
that (1) all reactions be reversible and (2) the following
inequalities hold

i.e.

Note that the batch reactor preserves the nonlinearity
of the reaction rates in the steady-state calculation.
Also, the combination of batch steady-state equations
and measurements might or might not be an overspeci-
fied problem.

For continuously stirred tank reactors (CSTRs), con-
servation laws yield a model of the form

where x is an s-vector containing the concentration of
each species in the reactor, VR is the volume of the
reactor, Qf is the volumetric flow rate into the reactor,
cf is an s-vector containing the inlet concentration of
each species, Qo is the effluent volumetric flow rate, and
r(x) is an r-vector containing the reaction rates.

Here, η specifies the number of linear algebraic
relationships among the s species at equilibrium be-
cause the null space represents linear combinations of
the material balances that eliminate nonlinear reaction
rates. We will require i.e.

If expression 16 is an equality instead of an inequality,
then determination of the steady state is generally a
well-defined, linear problem with a unique solution.
Note that the left-hand side of expression 16 is actually
an upper bound because we could potentially choose a
measurement contained within the span of the null
space (a linear combination of the null vectors). How-
ever, such measurements would be invariant and hence
would give no dynamic information. Also, expression 16
does not imply that multiple steady states can satisfy
the steady-state measurement; rather, having multiple

Ak )
∂F(xk,uk,wk)

∂xk
T

(8a)

Gk )
∂F(xk,uk,wk)

∂wk
T

(8b)

Ck )
∂h(xk)

∂xk
T

(8c)

x̂k|k ) x̂k-1|k-1 (9a)

Pk|k ) Pk-1|k-1 (9b)

0 ) F(x̂k-1|k-1,uk-1)-x̂k|k-1 (10a)

0 ) Ak-1Pk-1|k-1Ak-1
T + Gk-1Qk-1 Gk-1

T - Pk|k-1
(10b)

0 ) x̂k|k-1 + Lk[yk - h(x̂k|k-1)] - x̂k-1|k-1 (10c)

0 ) Pk|k-1 - LkCkPk|k-1 - Pk-1|k-1 (10d)

Lk ) Pk|k-1 Ck
T[CkPk|k-1 Ck

T + Rk]
-1 (10e)

x̂k|k ) x̂k|k-1 ) x̂k-1|k-1 (11)

yk ) h(x̂k|k-1) (12)

x̂k|k * xk (13)

d
dt

(xVR) ) νTr(x)VR (14)

number of “linear” equations <

number of estimated species e

number of independent equations

nm + η < s e n + F

d
dt

(xVR) ) Qfcf - Qox + νTr(x)VR (15)

number of linear equations <

number of estimated species

nm + η < s (16)
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steady states that can satisfy the steady-state measure-
ment implies that expression 16 holds. EKF failure for
CSTRs modeled by eq 15 must be confirmed by verifying
that eqs 10 hold. This requirement differs from the
batch case because, in general, the CSTR design equa-
tion (eq 15) yields a sufficient number of equations to
calculate all possible steady states, whereas the batch
design equation (eq 14) does not.

We now examine several examples that illustrate
these points.

3.2. Example 1. Consider the gas-phase, reversible
reactions

with stoichiometric matrix

and reaction rates

We define the state and measurements to be

where cj denotes the concentration of species j in moles
per liter, R is the ideal gas constant, and T is the reactor
temperature in Kelvin. For the simulations, RT ) 32.84
mol atm/L. We assume that the ideal gas law holds. We
consider state estimation for both a batch reactor and
a CSTR.

3.2.1. Batch Reactor. From first principles, the model
for a well-mixed, constant-volume, isothermal batch
reactor is

We consider state estimation with the following param-
eters:

The distribution for the initial state is N(xj0,Π0). Note
that the initial guess, xj0, is poor. The actual plant
experiences N(0,Qk) noise in the state and N(0,Rk) noise

in the measurements. For this example, all reactions
are reversible and so the conditions for EKF failure hold.

We now examine the estimation performances of both
the EKF and MHE for this system.

Figure 2 demonstrates that the EKF cannot recon-
struct the evolution of the state for this system. In fact,
the EKF appears to converge to incorrect steady-state
estimates of the state. Table 1 presents the results of
solving eqs 10 for this system. Note that the concentra-
tions of components A and B are negative, indicating
that the EKF has converged to an unphysical state esti-
mate. To prevent negative concentrations, we next im-
plement an ad hoc clipping strategy in which negative
filtered values of the state are set to zero (i.e., if x̂k|k <
0, set x̂k|k ) 0). Figure 3 shows a plot of these clipped
EKF results. Here, the clipped EKF drives the predicted
pressure 3 orders of magnitude larger than the mea-
sured pressure before eventually converging to the
actual states. Figure 4 presents the results of applying
MHE. For these results, we have constrained the state
to prevent estimation of negative concentrations. The
plots demonstrate that MHE swiftly converges to the
correct state estimates.

A little algebraic analysis reveals that multiple steady
states satisfy the steady-state measurement for this

A y\z
k1

k2
B + C (17a)

2B y\z
k3

k4
B + C (17b)

k ) [0.5 0.05 0.2 0.01] (17c)

ν )[-1 1 1
0 -2 1 ] (18)

r ) [k1cA - k2cBcC

k3 cB
2 - k4cC

] (19)

x ) [cA cB cC]T (20a)

y ) [RT RT RT]x (20b)

3x ) f(x) ) νTr (21)

x0 ) [0.5 0.05 0]T (22)

∆t ) tk+1 - tk ) 0.25 (23a)

Π0 ) diag(0.52, 0.52, 0.52) (23b)

Gk ) diag(1, 1, 1) (23c)

Qk ) diag(0.0012, 0.0012, 0.0012) (23d)

Rk ) 0.252 (23e)

xj0 ) [0 0 4]T (23f)

Figure 2. Extended Kalman filter results. (a) Evolution of the
actual (solid line) and EKF updated (dashed line) concentrations.
(b) Evolution of the actual (solid line), measured (points), and EKF-
updated (dashed line) pressure estimates.

number of linear equations <

number of estimated species e

number of independent equations

nm + η ) 2 < s ) 3 e n + F ) 3
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system. At steady state, the model and measurement
equations yield one linear equation (assuming no noise
in the steady-state measurement yss)

and two nonlinear equations (because the rank of the
stoichiometric matrix is 2)

Solving for the steady-state solution using eqs 24-26
gives

Descartes’ rule of signs states that, for polynomials with

real coefficients, the number of positive, real roots is
either the number of sign changes between consecutive

coefficients or 2 less than this number. Because equi-
librium constants and the steady-state measurement
are positive, eq 29 has at most one positive root. Thus,
there is only one physically realizable steady state.
MHE is a natural estimation tool for this system
because its incorporation of constraints can prevent the
estimator from converging to unphysical steady states.

3.2.2. CSTR. From first principles, the model for a
well-mixed, isothermal CSTR reactor is

We consider state estimation with the following mea-
surement and parameters:

Figure 3. Clipped extended Kalman filter results. (a) Evolution
of the actual (solid line) and clipped EKF updated (dashed line)
concentrations. (b) Evolution of the actual (solid line), measured
(points), and clipped-EKF-updated (dashed line) pressure esti-
mates.

cA + cB + cC )
yss

RT
(24)

k1cA ) k-1cBcC (25)

k2 cB
2 ) k-2cC (26)

cC )
k2

k-2
cB

2 ) K2 cB
2 (27)

cA )
k-1k2

k1k-2
cB

2 )
K2

K1
cB

3 (28)

0 )
K2

K1
cB

3 + K2 cB
2 + cB -

yss

RT
(29)

Figure 4. Moving-horizon estimation results, states constrained
to x g 0, smoothing initial covariance update, and horizon length
of 2.5 time units (N ) 11 measurements). (a) Evolution of the
actual (solid line) and MHE-updated (dashed line) concentrations.
(b) Evolution of the actual (solid line), measured (points), and
MHE-updated (dashed line) pressure estimates.

Table 1. EKF Steady-State Behavior, No Measurement or
State Noise

component
predicted EKF

steady state
actual steady

state

A -0.0122 0.0224
B -0.1364 0.2006
C 1.1746 0.6411

3x )
Qf

VR
cf -

Qo

VR
x + νTr (30)

cf ) [0.5 0.05 0]T (31)

x0 ) [0.5 0.05 0]T (32)

Qf ) Qo ) 1 (33)

VR ) 100 (34)
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The distribution for the initial state is N(xj0,Π0). Again,
the initial guess, xj0, is poor. The actual plant experi-
ences N(0,Qk) noise in the state and N(0,Rk) noise in the
measurements. For this example

indicating that multiple measurements might satisfy
the steady-state measurement. We now examine the
estimation performances of both the EKF and MHE for
this system.

Figure 5 demonstrates that, similarly to the batch
case, the EKF appears to converge to an incorrect
steady-state estimate. This observation is confirmed by
determining the EKF steady state assuming no state
or measurement noise. Calculating the EKF steady
state via eqs 10 and assuming no state or measurement
noise yields the results in Table 2. Some steady-state
analysis of the system sheds light onto the cause of this
phenomenon. Assuming no noise in the steady-state
measurement, the system has one linear steady-state
measurement yss

and one linear combination resulting from ηn, the null
space of the stoichiometric matrix

Therefore the steady-state calculation is a nonlinear
problem, and this system satisfies both conditions
required for EKF failure.

Figure 6 presents the EKF estimation results for
implementation of a clipping strategy. Although clipping
eliminates estimation error, this strategy causes a
lengthy period of overestimation of the pressure, in some
cases by 2 orders of magnitude.

Figure 7 presents the results of applying MHE. For
these results, we have constrained the state to prevent
estimation of negative concentrations. These figures
demonstrate that MHE swiftly converges to the correct
state estimates.

3.3. Example 2. Reconsider the batch model given in
section 3.2, but with the following updated parameters

and new measurement

Although the measurement has no physical meaning,
we include this example to illustrate EKF and MHE
behavior given multiple physically realizable steady
states (in contrast to the previous example, which had
only one such state). Clearly, the conditions for EKF
failure still hold for this example. Solving for the steady-
state solution in terms of cB yields

Again using Descartes’ rule of signs and taking into
account the specified parameters, eq 42 has two positive
roots and one negative root. We now examine the effect
of poor initial conditions on the estimation behavior of
the EKF and MHE.

Table 3 summarizes the estimation results examined
in this section. Given a poor estimate of the initial state
[3 0.1 3]T, the EKF cannot reconstruct the evolution of

yk ) [RT RT RT]xk (35a)

∆t ) tk+1 - tk ) 0.25 (35b)

Π0 ) diag(42, 42, 42) (35c)

Gk ) diag(1, 1, 1) (35d)

Qk ) diag(0.0012, 0.0012, 0.0012) (35e)

Rk ) 0.252 (35f)

xj0 ) [0 0 3.5]T (35g)

number of linear equations <

number of estimated species

nm + η ) 2 < s ) 3 (36)

cA + cB + cC )
yss

RT
(37)

ηn ) [3 1 2] (38)

3cA + cB + 2cC ) 3cAf + cBf + 2cCf (39)

k ) [0.5 0.4 0.2 0.1]T (40a)

Rk ) 0.12 (40b)

Figure 5. Extended Kalman filter results. (a) Evolution of the
actual (solid line) and EKF updated (dashed line) concentrations.
(b) Evolution of the actual (solid line), measured (points), and EKF-
updated (dashed line) pressure estimates.

Table 2. EKF Steady-State Behavior, No Measurement or
State Noise

component
predicted EKF

steady state
actual steady

state

A -0.0274 0.0124
B -0.2393 0.1837
C 1.1450 0.6753

yk ) [-1 1 1]xk (41)

0 ) -
K2

K1
cB

3 + K2 cB
2 + cB - yss (42)
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the state, whereas MHE can. Given an even poorer
estimate of the initial state [4 0 4]T, both the EKF and
MHE fail to reconstruct the evolution of the state. To
improve the quality of the estimates, we constrain the
concentrations in the estimators so that

With this extra knowledge, MHE converges to the true
state estimates, whereas the clipped EKF estimates are
trapped on the constraint. Finally, we relax the con-
centration constraints to

Not surprisingly, the clipped EKF estimates remain
trapped on the constraint. The quality of the MHE
estimates is a function of the estimation horizon. If the
estimation horizon is too short, the MHE estimates are
pinned against the state constraint; increasing the
horizon remedies this problem. For short horizons, we
suspect that the data in the estimation horizon cannot
overcome the biasing of the arrival cost approximation,
hence resulting in state estimates pinned against the
constraint. Changing arrival cost approximations (e.g.,
switching from the smoothing scheme to a uniform
prior) when constraints are active might constitute one
way of addressing this problem without having to
increase the estimation horizon.

3.4. Computational Expense. Table 4 summarizes
the average computational expense per time step for

each of the examples presented in this paper. All
computations were performed in GNU Octave (http://
www.octave.org/) on a 2.0-GHz processor. MHE com-
putations were performed using the NMPC toolbox
(http://www.che.wisc.edu/tenny/nmpc/). Not surpris-
ingly, MHE requires substantially more computational
time than the EKF. This increase results because (1)
MHE employs optimization whereas the EKF uses a

Figure 6. Clipped extended Kalman filter results. (a) Evolution
of the actual (solid line) and clipped-EKF-updated (dashed line)
concentrations. (b) Evolution of the actual (solid line), measured
(points), and clipped-EKF-updated (dashed line) pressure esti-
mates.

0 e cj e 4.5, j ) A, B, C (43)

0 e cj e 5.5, j ) A, B, C (44)

Figure 7. Moving-horizon estimation results, states constrained
to x g 0, smoothing initial covariance update, and horizon length
of 2.5 time units (N ) 11 measurements). (a) Evolution of the
actual (solid line) and MHE-updated (dashed line) concentrations.
(b) Evolution of the actual (solid line), measured (points), and
MHE-updated (dashed line) pressure estimates.

Table 3. Effects of a Priori Initial Conditions,
Constraints, and Horizon Length on State Estimation

estimator xj0 constraints horizon lengtha
estimates
converge?b

EKF [3 0.1 3]T x g 0 NA no
MHE [3 0.1 3]T x g 0 2.5 time units

(N ) 11)
yes

EKF [4 0 4]T x g 0 NA no
MHE [4 0 4]T x g 0 2.5 time units

(N ) 11)
no

EKF [4 0 4]T 0 e x e 4.5 NA no; CE
MHE [4 0 4]T 0 e x e 4.5 2.5 time units

(N ) 11)
yes

EKF [4 0 4]T 0 e x e 5.5 NA no; CE
MHE [4 0 4]T 0 e x e 5.5 2.5 time units

(N ) 11)
no; CE

MHE [4 0 4]T 0 e x e 5.5 time units
(N ) 21)

no; CE

MHE [4 0 4]T 0 e x e 5.5 10 time units
(N ) 41)

yes

a N denotes the number of measurements in the estimation
horizon. b Estimates converge if xk - x̂k|k f 0. CE indicates that
the estimates are trapped on a constraint.
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one-step linearization, and (2) MHE calculates sensitivi-
ties over a trajectory of states whereas the discrete EKF
calculates only a single sensitivity.

4. Conclusions
Virtually all chemical engineering systems contain

nonlinear dynamics and/or state constraints. The need
to incorporate this information into state estimation is
illustrated by the examples presented in this paper.
These examples demonstrate that, even with perfect
concordance between the model and the physical plant,
it is possible for the nominal EKF to fail to converge to
the true state when (1) the system model and measure-
ment are such that multiple states satisfy the steady-
state measurement and (2) the estimator is given a poor
initial guess of the state.

Given the same estimator tuning, model, and mea-
surements as the EKF, MHE provides improved state
estimation and greater robustness to poor guesses of the
initial state. These benefits arise because MHE incor-
porates physical state constraints into an optimization,
accurately uses the nonlinear model, and optimizes over
a trajectory of states and measurements. With local
optimization, our results indicate that multivariate
normal approximations to the arrival cost combined
with judicious use of constraints can prevent multiple
optima in the estimator and generate acceptable esti-
mator performance.

One potential pitfall of employing local optimization
is the inability to identify multiple modes in the a
posteriori distribution. Example 2 of this paper il-
lustrates this pitfall perfectly: attraction of MHE
estimates to a mode in the infeasible region leads to
state estimates trapped on constraints even though
another mode lies within the feasible region. To over-
come this difficulty, we are currently investigating the
application of Monte Carlo particle filters similar to
those proposed by Chen et al.6 to track multiple optima
in the estimator. These filters present one method of
identifying the appearance and disappearance of small
numbers of local optima in the a posteriori distribution,
but they do not provide a reasonable framework for
accurately reconstructing the mode of this distribution.
Using particle filters to estimate the arrival cost in MHE
presents one manner of better approximating the mode
of the a posteriori distribution. Additionally, identifying
local optima in the arrival cost distribution will yield
better initial guesses for the local MHE optimization.

It is reasonable to expect that more complicated
models with less restrictive assumptions than the ones
proposed here might yield multiple optima correspond-
ing to both physically realizable and unrealizable states.
Given that MHE permits incorporation of constraints
into its optimization, it is the natural choice for prevent-

ing estimation of physically unrealizable states. Because
MHE employs a trajectory of measurements as opposed
to measurements at only a single time, it is better suited
than the EKF for distinguishing among the remaining
physically realizable states.
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