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Abstract - An active sensing method for multi- 
sensor fusion systems with actuators is proposed. 
To realize active sensing with multiple sensors, 
i) where to position sensors, ii) how to associate 
data, and iii) how to fuse data should be deter- 
mined. The authors propose a new method mainly 
concerning i). The method utilizes estimated er- 
rors of estimated values to determine optimal sen- 
sor locations where useful data are expected to be 
obtained and effectively associated. An algorithm 
to calculate nearly optimal sensor locations, in- 
stead of exact optimal locations, is also proposed 
to reduce calculation. As examples, the active 
sensing method is applied to multi-target track- 
ing by a system with two hand-eye cameras, and 
visual and tactile fusion in a system with a cam- 
era and a tactile sensor. By using this method, 
the sensing strategy is optimized for the object of 
measurement. 

I. INTRODUCTION 

In recent years, sensor fusion, which is a technique in en- 
gineering to  realize multisensor recognition systems more 
powerful than single-sensor systems, has attracted much 
attention [l, 21. Research on sensor fusion has involved, 
for example, studies of an autonomous land vehicle (ALV), 
which has multiple sensors and geometrical maps and moves extent. However, even the definition is llot yet fixed and 
autonomously [3i and visual and further studies are expected. In this paper, we propose a 
and tactile sensors to a [die method to realize active sensing. Although there =e many 

fusion using visual 

The purpose Of many Of these fusion 
systems is for operation in the real world. To achieve this 

when an ALV en- 
counters anything on its route, the ALV should recognize 

types of active sensing, here, we concentrate on the prob- 
lem of multisensor systems positioning at locations 

purpose, it is essential to  be to unknown or where necessary information is expected to be obtained. 
unknown Objects* For In active sensing using multiple sensors, problems arise 

such as 

obtained over time. 
In addition, the goals of these systems are generally not 

only to acquire information but also to control objects 
or environments. For example, one of the goals of an 
ALV is to reach its destination, and one of the goals of 
a manipulator using visual and tactile fusion is to handle 
objects using sensed information. 

It is natural to consider that such a sensor fusion system 
includes not only multiple sensors but also actuators to 
produce behavior. In this case, the actuators can be used 
as elements of sensing. For instance, when a robot hand 
holds a object, it may search for a good grip by moving 
its fingers. In such a case, we can say that there is close 
relationship between behavior of actuators and sensing. 

Methods using actuators for sensing as mentioned above 
are known as active sensing [5-71. In active sensing of un- 
known objects, it is necessary to determine the actuator's 
motion to realize optimal sensing by effectively using in- 
formation obtained over time. This corresponds to formu- 
lating a sensing strategy. Similar concepts are known in 
psychology as the affordance concept of Gibson (an object 
exists with actions on it being included) [8] and the per- 
ceptive circulation of Neisser (perception is based on the 
repetition of the cycle: measurement -+ identification of 
the model --+ prediction ---$ measurement) [9]. These are 
considered to be parts of basic human sensing behavior. 

Active sensing in engineering has been studied to some 

it and determine its position to decide how to react toward 
it. In such cases, how and what to sense is not clear in the 
design stage of the system. Therefore the system should 
formulate a sensing strategy gradually, using information 

i) 
ii) how to associate informatioll from multiple sensors, 
iii) how to fuse associated data. 

to position sensors, 
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Here, the term “associate” is used to mean acquiring cor- 
rect association of data  from sensors and sensed objects. 
In this paper, we mainly deal with and propose a new 
method for i). Conventional methods of the nearest neigh- 
bor data association algorithm [7] and parallel Kalman 
filters (lo] are used for ii) and iii). 

In the following sections, first, the method to select op- 
timal sensor locations using estimated errors is proposed. 
In this method, not only the accuracy of estimates but 
also the suitability for association is considered. In ad- 
dition, a concrete algorithm for the proposed method is 
described. 

Furthermore, as examples, we first study a multi-target 
tracking problem with two cameras mounted on the tips 
of manipulators. The movement of objects is assumed 
to be modeled. The cameras are moved to the locations 
where the best data are expected to be obtained. Next, we 
discuss the problem of acquiring position and orientation 
of a three-dimensional object using a fixed camera and a 
tactile sensor. In this case, applying information obtained 
by the camera to the three-dimensional model, optimal 
tactile sensor locations are determined. That is, rough 
position and orientation of the object is detected by the 
camera and, using this information, sites for contact by 
the tactile sensor are determined. 

11. SELECTION OF SENSOR LOCATIONS 

A .  Selection of Sensor Locations to Minimize Estimated 
ETTOTS 

Here, we discuss the problem of how to select sensor 
positions to realize the best observation of time-variant 
objects. Tracking of moving objects with hand-eye cam- 
eras can be considered as an example. For simplicity, first, 
we concentrate on the case of one object and multiple sen- 
sors. 

The state transition equation of the state vector x of the 
object and the observation equation (in the observation 
vector, outputs from multiple sensors are aligned) are 

where t is time, F and G are matrices, h(.) is a nonlinear 
vector function, and w(t)  and v ( t )  are zero mean noises 
with variances &(t) and R(t) ,  respectively. To estimate 
the state 2 from the observation z ,  a Kalman filter is used. 

The merits of the filter are the following: 
i) The recursive loop structure of the filter allows the esti- 
mates of the state to be adjusted incrementally with each 
new set of measurements. 
ii) The prediction of the next state vector is incorporated 
as part of the filter algorithm. 
iii) The variances of the estimate are evaluated as part of 
the algorithm. 
iv) The estimator is optimal in a Bayesian (minimum 
variance) sense if all the state and observation noises are 
Gaussian, otherwise it is the optimal linear estimator. 
The system is nonlinear, hence an extended Kalman filter 
is used. That is, the prediction of the state vector z(t+l) 
and the variance P(t + 1) at time t are 

q t  + lit) = F ( t ) i ( t l t )  (3) 
P(t  + 1lt) = F( t )P( t l t )FT( t )  + G(t)Q(t)GT(t) ,  (4) 

and after observation at time t + 1, the estimates are up- 
dated by 

q t  + 1Jt + 1) = q t  + llt) 

P ( t  + llt + 1) = P - y t  + llt) 

+w(t + 1 ) [ ~ ( t  + 1) - h ( k ( t  + Il t) , t)]  ( 5 )  

with 

W(t  + 1) = P(t  + l ( t  + 1) 

ah 
where zI,j,(t+llt) is the Jacobian of h ( x , t )  with x at 
5(t + lit), 5(tlt) is the estimate of z ( t )  a t  t using ob- 
servations up to time t ,  and 2(t  + llt) is the estimate of 
z(t+l) using observations up to time t and the state tran- 
sition equation (1). P(t[ t )  corresponds to the variance 
E [ ( z ( t )  - j l ( t l t ) ) ( x ( t )  - ik(tlt))T], where E[.] represents 
expectation. 

Here, let us consider the movement of sensors to realize 
better estimation by the Kalman filter. Note that chang- 
ing sensor locations means changing h( . ) .  Then, when we 
want to specify that h(.) or P depends on sensor loca- 
tion, notation such as h(.:  x s )  or P(.; x s )  is used, where 
x ,  = [xTl. xT2,.  . . , xThfIT: x , )  is the location of sensor j 
and -11 is the total number of sensors. In this paper, we 
define a good sensor location as one where the variance of 
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5 is small. That  is, after prediction of P(t + llt + 1; 2,) 
at time t ,  we calculate 

R(z,) = det P(t  + 1Jt + 1; x,), (8) 

and select sensor location x, to  minimize R(z,). As one 
can see in (6), P(t  + llt + 1; 2,) does not invlove z(t + 1). 
Hence, one can calculate P(t + llt + 1; 2,) at time t. Note 
that R(z,) is positive because P is positive definite and 
that R(z,) corresponds t o  the (scalar) variance of 2, be- 
cause i t  is the product of all eigenvalues of P(t + llt + l).  
Minimizing R(z,) is equivalent to selecting the location 
where we can obtain the best data as the result of fusing 
the prediction by the state transition equation and obser- 
vations by sensors. Using the determinant of the variance 
of the estimate as the evaluation function is known as a 
D-optimum approximate design in optimum experimental 
designs [ll] and the determinant of the variance is called 
the general variance. 

It is difficult to  calculate the defined R(z,) directly, 
so we discretize location x ,  and select the optimal loca- 
tion from the finite candidates. Furthermore, selecting 
the location with small R(z,) is equivalent to selecting 
the location where 

EP(xs) = l/R(z,) = det P-'(t + llt + 1; x,) (9) 

is large. By using this evaluation function E P ,  since P-' 
can be calculated from (6) directly, we need not calculate 
P from P-'. 

B. Selection of Location to Make Good Association 
Possible 

Next, let us consider the case of multiple objects and 
sensors. When data of objects are obtained from multi- 
ple sensors, we must associate them to clarify which data 
originated from which object. 

The state transition equation of object, i is 

x i ( t + l )  = F;( t )x i ( t )+G;( t )u t ; ( t )  ( i  = 1,. . . ,Ar) ,  (10) 

corresponding to  (1). The subscript i denotes the number 
of the object and N is the total number of objects. The 
measurement of this object through sensor j ,  correspond- 
ing to (2), is 

t j ; i ( t )  = hj (x; ( t ) ,  t )  + vj , ; ( t )  ( j  = 1,. . . ,-U). (11) 

where v j , ; ( t )  is the zero mean noise independent of wl(1 = 
1,. ..,AT) and w m ; j  ( m  = 1,. . . , M ; m  # j ) ,  and its vari- 
ance is given by Rj;j(t). zj;; is assumed not to be observed 
when the object is out of range. 

When outputs of sensor j are obtained, we must know 
which object is the origin of the outputs. Assume that, L 
outputs from sensor j ,  E j , k ( t )  ( k  = 1,. . . , L) ,  are obtained 
at time t. Although various methods can be used for 
association, we use the nearest neighbor data association 
algorithm for simplicity. In this method, using 

2j;i(t + llt) = h j ( i i ( t  + llt)), (12) 

we associate E j , k ( t +  1) which minimizes the Mahalanobis 
generalized distance 

p j ; i k  = ( i j ; i ( t  + 1lt) - E j ; k ( t  + l))Tsj;;(t + 1lt)-' 

. (2j; i ( t  + Ilt) - i j ; k ( t  + 1)) (13) 

with z j , ; ( t+  1). Sj ; ; ( t+ llt) is the variance of 2j;i(t + llt) 
and is calculated as 

(14) 
where Pi is the variance of the state vector xi. When 
pj;ik ( k  = 1,. . . , L )  is larger than the appropriately de- 
fined threshold, no output is associated with zj , i ( t  + l). 
The vector z i ( t  + 1) in which zj,j(t + 1) are aligned along 
j is the observation vector of object. i, and in its variance 
R;(t + l), Rj,i(t + 1) are aligned diagonally. Using this 
z i ( t  + l), the Kalman filter of the object i is formed as 
(3)-(7) with subscript i. 

For accurate association using (13), sensor outputs from 
different objects must not be close. Equation (13) denotes 
the selection of the output which is nearest to the pre- 
dicted output. Hence, in order to make this mechanism 
effective, the hlahalanobis generalized distance on sensor 
j between two arbitrary objects: 

Dj;ia,ip E (2 j ; im( t+  llt) - 5j ; ip( t  + llt))T 

.(Sj;ie + ~ j ; i a ) - '  

. (2j; im(t  + lit) - %j;i,j(t + Ilt)) 
(i,,ip = 1,. . . , N ;  i, # ip) (15) 

must be large. A good sensor location is defined as one 
which makes this distance large. When an object i, or i p  
is out of range of sensor j ,  Dj,ie,io is assumed not to  be 
obtained. In this paper. considering that the selectivity 
decreases suddenly when the distance becomes small, we 
use 

h.1 

E'(2, )  - 1/Dj with Dj G min Dj;im,i0 (16) 
2 a , Z B  j=1 
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as the evaluation function of the accuracy of association 
of the total system. When no Dj;ie,ip is obtained, a small 
positive value is used as Dj .  The larger E"(x,) is, the 
better the association is. 

C. Definit ion of Evaluation Function 

We want to  define an evaluation function which yields 
accuracy in both the estimates: 

&r(x,) E l/Rj(x,) i det P;'(t + llt + 1; 2,) 

( i  = 1, ..., N )  (17) 

and the association. For this purpose, first, we clarify the 
procedure for computing Er(x,) and E"(x,) when there 
are several sensors and objects. 
i) For the sensors at the candidate location x,, compute 

ii) Using i j ; i ( t  + llt) above, evaluate €"(x,), 
iii) For each i (i = 1,. . . , N ) ,  evaluate €f(x,) using sensors 

2 j ; i ( t  + llt) (i = 1,. . . , N ;  j = 1,. . . ,Ad), 

which obtain i j ; i ( t  + llt) in their range. 
The evaluation function representing 

total system is 

N 

RAII(X.s) E R i ( x s ) ,  
i=l 

111. ALGORITHM 

A .  One Object 

First, let us consider the case of only one object ( N  = 
1). The accuracy of association E" need not be considered 
because there is only one object. Even in the case of only 
one object, calculation is tedious when there are many 
sensors or x, is of a high dimension. 

Now, let us consider x, hj( . ) ,  zj  and Rj corresponding 
to each sensor j .  In this case, because there is only one 
object, the subscript i is omitted. When no correlation of 
observation noise is assumed, we can write 

' 5s=[x:l,X:2,...,x:&l 

_ -  ah dhl' d h z T  
ax -I= 9- , .-  
2 = [%T, %;, . . ax' . , T 

'IT 
a h M  . -  
ax 

( R = diag(R1, R2, . - , R M ) .  

When 

T 
1' 

( 6 )  can be rewritten as 
(18) 

M 

and minimizing this function corresponds to maximizing 

i=l 

Using this E:,, and €"(xS), we define the evaluation func- 
tion which yields accuracy in both the estimates and the 
association as 

where X is an appropriate positive value. The sensor lo- 
cations which maximize l l (~ , )  are defined as desired sen- 
sor locations. Locations maximizing E:,, and ones max- 
imizing E" may not agree. In this case, the location 
which maximizes €ill among locations allowing correct 
association should be selected. The value of X determines 
whether obtaining estimates with small errors or associ- 
ating correctly is focused on, and to what extent they are 
weighted. However, because it is necessary to know the 
values of E:ll and E" to set X appropriately, we cannot 
establish a good algorithm to  set X before observations. 

P-'(t + llt + 1) = P-'(t + llt) + z P ; l ( t  + 1). (23) 
j=1 

As a first step, considering only sensor 1, we select sensor 
location x,l using the evaluation function 

EP(x,l) G det P-'(t + llt + 1; x,~), (24) 

where 

Next, using the fixed x,1 and the evaluation function 
EP(xslr xs2) defined by using 

P ( t + l l t  + 1; X,1,Xs2) = P - y t  + llt) 

+ P r l ( t  + 1; x,1) + F'F'(t + 1; ~,2), (26) 

we select x,2. Iterating this procedure, we can acquire a 
fairly accurate location for xs (greedy algorithm). 

B. Multiple Objects 

Next, we discuss the case of multiple objects. In this 
case, t,he accuracy of association E" must be considered. 
In the algorithm, sensor locations are fixed one by one 
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similarly to the algorithm of only one object. Considering 
that there are multiple objects, we can write the following, 
similar to  (23): 

M 
Pcl ( t  + l l t  + 1) = Pr'(t  + l l t )  + pG1(t + 1). (27) 

j=1 

As a first step, considering only the sensor 1, we select 
desired sensor location xal using the evaluation function 

(28) 
where 

Next, using fixed z,', we select 2 , 2  from 

where 

PFl(t + llt + 1; 2,1,2,2) = PF1(t  + l l t )  

+FG1(t + 1; =,I) + PG1(t + 1; ~ ~ 2 ) .  (31) 

Iterating this procedure, we can acquire a fairly accurate 
location for 2,. 

C. Method of Fusion 

As the method to fuse information from spatially sepa- 
rated sensors, we can obtain the following equation trans- 
forming ( 5 )  for each object: 

IV. APPLICATION 1: TARGET TRACKING 

A simulation of two cameras mounted on the tips of ma- 
nipulators (three degrees of freedom) cooperatively track- 
ing two objects on a two-dimensional plane surrounded by 
walls has been performed (Fig. 1). Since there are two 
objects, the evaluation function Z defined by (20) is used. 

mi = [zi,yi, ii, &IT is used as the state vector of the 
object i(i = 1,2) ,  where (zi,yi) is the position of the 
object normalized so that the length of a side of the wall 
is one, The state transition equation corresponding to 
(10) with 

r l  At 1 

is used, where At is the unit of discretization of time. 
When an object runs into a wall, it is assumed to be re- 
flected. The observation equation corresponding to (11) 
is 

f 6j.i f<j.i 2 h j ( z ( t ) , t ) + v j ; i ( t )  E --+[Cl+C2{-} 7lj;i 7lj;i ]e ,  (34) 

where is the zero mean noise of which variance is a unit 
matrix, and (<j;i,qj;j) are the coordinates of object i in 
camera j ' s  coordinate system. f is the focal length of the 
cameras, and C1 and C2 are positive constants. In this 
equation, it is shown that the noise becomes large when 
the output is far from the center of the screen. When an 
object is behind the camera, the output is assumed not 
to be obtained. It is assumed that one pitch of each joint 
of the manipulators is 5 degrees and maximum movement 
in one time step is 4 pitches. 

Fig. 2 shows the error of the estimated position j?(tlt): 

2 

d ( t )  C { ( z i ( t )  - j.i(tlt)12 + (yi(t) - ~ i ( t l t ) ) ~ } + ,  (35) 
i=l 

when the cameras are fixed or moving. This figure shows 
that, by using this active sensing method, the error d ( t )  

Y 

t 
I ' x  

Fig. 1 Hand-eye camera tracking system 
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Fig. 2 Results of simulation 

becomes small because the hand-eye cameras move to o p  
timal locations according to the object positions. Further- 
more, it was observed that when two objects are close, 
both cameras are located a t  the locations where both ob- 
jects are within the ranges, whereas when the objects are 
far apart, each camera follows a different object. These 
results show that an appropriate sensing strategy is for- 
mulated according to the states of the objects. 

V. APPLICATION 2: VISUAL AND TACTILE 
FUSION 

In this section, we consider the problem of obtaining 
position and orientation of a three-dimensional object by 
visual and tactile fusion. The sensor system is assumed 
to  have a three-dimensional geometrical model of the ob- 
ject. It consists of a fixed camera and a tactile sensor 
mounted on the tip of a manipulator. The camera is used 
t o  obtain rough position and orientation and, using this 
information, sites for contact with the tactile sensor are 
determined. The method described in Section I1 can be 
used to accomplish this by considering the geometrical 
model. 

First let us define a rotation. We denote the rotation 
q5x around x axis, q5y around y axis and 4z around z axis 
in turn by 4 = [q5x, 4y, 4,IT. The matrix corresponding 
to this rotation is 

0 sin& cos+= O I  

1 0  
0 cos& -sin& . 

The three-dimensional model of the object is defined 
using points and segments of lines in the model coordinate 
system in which the origin is at the representative point 
0 of the object. The position of the object is denoted by 
X o  and +02 where XO = [ X o ,  Yo, Z0IT is the position 
of the representative point 0 and +o = [40Z, 4oY, 4oZIT 
is the rotation of the object around the point 0 in the 
world coordinate system. For simplicity, XO and 4o are 
assumed to be constant with time. Coordinates x w  in the 
world coordinate system corresponding to coordinates X M  

in the model coordinate system are 

First, we define the observation with the camera. For 
simplicity, it, is assumed that the center of the camera is at 
the origin of the world coordinate system and the optical 
axis corresponds to the z axis. Using a pinhole camera 
model, we denote the observation by 

where x f  are the coordinates of the observed point in the 
screen coordinate system, f is the focal length and vc is 
the observation noise with variance R,. Substituting (37) 
into (38), we obtain 

XCf = h c ( R ( 4 o ) z M  + X O )  + v c  

= hc(XO,#O; z M )  + vc- (39) 

In observation with the camera, we detect character- 
istic points from the image and select the model points 
corresponding to these characteristic points. Using these 
model points, the variables XO and +o can be estimated. 
Here, we suppose that the model point with coordinates 
X M  corresponding to the screen coordinates x f  can be de- 
termined easily and we use the Kalman filter to estimate 
XO and Equation (39) is the observation equation 
corresponding to (2),  and XO and 4o are the state vec- 
tors corresponding to x in ( 2 ) .  

Next, let us consider the tactile sensor mounted on the 
tip of the manipulator. The tactile sensor obtains coor- 
dinates of points or parameters of edges of the object in 
the world coordinate system. First, let us consider the 
observation of points. We define the observation with the 
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tactile sensor of the point with world coordinates xw cor- 
responding to model coordinates X M  as 

XT = Z W ( x O , + O ; X M )  + u t ,  (40) 

where ut is the observation noise with variance Rt. This 
is the observation equation of the Kalman filter, and XO 
and +o are the variables to be estimated. 

Next, let us consider the situation where the tactile sen- 
sor is in contact with an edge of the object. In this case, it 
is assumed that we can obtain the parameters of the edge 
and we can easily determine the edge in the model cor- 
responding to this edge. From this relation, the position 
and orientation, XO and +o, are estimated. 

An edge (which is not perpendicular to the z axis) is 
denoted by 

Now, let us acquire the representation of this edge in the 
world coordinate system. Let R(c#J,) = ( r i j ) .  Transform- 
ing a point on the edge represented by (41)  by XO and 
+o, we obtain 

zw = r l l ( a . m M  + P M )  + m ( b M z M  + q M )  

YW = ~ ~ ~ ( U M Z M  + P M )  + r 2 2 ( b ~ z ~  + Y M )  
zw = T - ~ I ( ~ M Z M  + P M )  + r n ( b ~ z ~  + q M )  

+ r n z ~  + X o  

+ ~ Z M  + Yo (42) 

+r33 Z M  + 20. 
Substituting 

(43)  
ZW - T31PM - T32qM - 20 

r 3 l u M  + r32bM + r33 
%M = ’ 

obtained by transforming the third equation of (42) ,  into 
the first and second equations, we obtain 

(44)  
xw = UWZW + PW 
YW = b w z w  + q w ,  

where 

This is the equation of the edge (41)  transformed by XO 
and qj0. We denote this relation as 

P W  = ‘$(xo,+O;PM),  (46 )  

- where P W  = [‘WibW,pW,qW]T and P M  - 

[uM,bM,pM:qM]T*  
We assume that the tactile sensor can obtain parame- 

ters of edges in the world coordinate system. The parame- 
ter is denoted by pT = [UT, bT ,pT ,  qTIT. Although we can 
also use the Kalman filter to obtain the parameter from 
distribution of points of the edge, we omit the procedure 
for simplicity. The observation is defined by 

P T  = P W  + UT = < ( x O ,  +O; P M )  + (47) 

where UT is the observation noise with variance RT. This 
is the observation equation of an edge, and XO and +o 
are variables to be estimated. 

In the explanation above, we showed that the Kalman 
filter with the model can be used for estimating the po- 
sition and orientation of an object. Equations (39), (40) 
and (47)  denote observation. Equations (40)  and (47)  
change according to which point with coordinates X M  or 
which edge with parameter pM is sensed by the tactile 
sensor. Applying the method of sensor location selection 
described in Section I1 to these equations, we can select 
optimal points or edges for contact with the tactile sensor 
after rough sensing with the camera. 

Specifically, defining Y O  = [X&+;lT and its vari- 
ance as %,, we can obtain the following by applying 
the Kalman filter to (39): 

Y o @  + 1lt + 1 )  = Y O ( t 1 t )  + Wl(t + 1) 

+ 1 )  - & ( Y O ( t l t ) ;  X M ( t  + I))] (48)  
P;:(t + llt + 1 )  = PYY(tl t)  

where 

U ’ , ( t + l ) = P y o ( t + l l t + l )  

Note that, here, t is an index of characteristic points and 
does not correspond to time. X M ( ~  + 1) in (48) are the 
model coordinates corresponding to the observed point 
x f ( t + l ) .  The Jacobians in these equations are calculated 
as 
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where k = x, y or z and 

Using these equations with the camera output xf, we can 
obtain rough position and orientation of the object. Sim- 
ilar equations can be obtained by applying the Kalman 
filter algorithm to (40) and (47). The Kalman filter for 
the observation of X T  is 

W2(t + 1) = +,(t + llt + 1) 

) T  RT1(t + 1). (59) 

Equations (55) and (58) depend on z ~ ( t +  1) and p M ( t +  
1). Thus, to maximize 

EP = detP-’ Y J  t + llt + l ) ,  (60) 

we select x ~ ( t + l )  and/or p M ( t + l ) .  This yields the sites 
for contact with the tactile sensor. Using the outputs of 
the tactile sensor, we can estimate more precise Y o  using 
(54)-(59). This is the method by which to obtain the 
position XO and orientation +o efficiently. 

VI. CONCLUSION 

An active sensing method in sensor fusion was proposed. 
First, the method to obtain sensor locations for ob- 

taining estimates with small error was proposed. In this 
method, not only the accuracy of the estimates, but also 
suitability for association of sensor data is considered. 
Furthermore, an algorithm to calculate the proposed method 
was described. 

Next, as examples, the method was applied to a multi- 
target tracking system with multiple sensors, and visual 
and tactile fusion using a camera and a tactile sensor. 

By using this method, one can acquire sensor locations 
for the object of measurement. In other words, one can 
tailor the sensing strategy to one’s purposes. 
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