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ABSTRACT
We contribute Policy Reuse as a technique to improve a re-
inforcement learning agent with guidance from past learned
similar policies. Our method relies on using the past poli-
cies as a probabilistic bias where the learning agent faces
three choices: the exploitation of the ongoing learned pol-
icy, the exploration of random unexplored actions, and the
exploitation of past policies. We introduce the algorithm
and its major components: an exploration strategy to in-
clude the new reuse bias, and a similarity function to esti-
mate the similarity of past policies with respect to a new
one. We provide empirical results demonstrating that Pol-
icy Reuse improves the learning performance over different
strategies that learn without reuse. Interestingly and almost
as a side effect, Policy Reuse also identifies classes of similar
policies revealing a basis of core policies of the domain. We
demonstrate that such a basis can be built incrementally,
contributing the learning of the structure of a domain.

1. INTRODUCTION
We introduce Policy Reuse as a technique for reinforce-

ment learning guided by past policies. Policy Reuse bal-
ances among exploitation of the ongoing learned policy, ex-
ploration of random actions, and exploration of the past
policies. The exploration versus exploitation tradeoff de-
fines whether to explore unseen parts of the space or to
exploit the knowledge already acquired during the learning
process. Several strategies, such as ε-greedy, Boltzmann or
directed exploration [16], have been developed to balance
this tradeoff. However these strategies only exploit knowl-
edge obtained in the current learning process.

Several methods aim at improving learning by introduc-
ing additional knowledge into the exploration choices. Ad-
vice rules [7] define the actions to be preferred in different
sets of states. The user provides the advice rules. Different
knowledge sources can be used, for example through learn-
ing policies by imitation [10]. Other algorithms introduce
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previous knowledge through macro-actions or sub-policies.
Macro-actions can be used to learn new action policies in
Semi-Markov Decision Processes (SMDPs) [18]. Options
can also be used in SMDPs by learning their behavior on
line [13].

Hierarchical RL uses different abstraction levels to orga-
nize subtasks [3], and some approaches are able to learn such
a hierarchy [6]. The methods for learning hierarchies or op-
tions capture the structure of the domain. Some related
algorithms are SKILL [17], which discovers partially defined
policies that arise in the context of multiple tasks in the
same domain, and L-Cut, which discovers subgoals and cor-
responding sub-policies [12]. Sub-policies can suboptimally
solve a task with computable bounds [1].

Transfer learning, as knowledge reuse across different learn-
ing task, can be performed by initializing the Q-values of a
new episode with previously learned Q-values [2, 8]. How-
ever if the source and target tasks are very different, transfer
learning requires expert knowledge to decide on the feasibil-
ity of the transfer, and on the mapping between actions and
states from the source and target tasks [14, 15]. Value func-
tion transfer is an alternative but it is restricted to previous
learning processes performed also through a value function.

In this paper we contribute Policy Reuse, a reinforce-
ment learning method in which learned policies are saved
and reused for similar tasks. The main algorithm of Policy
Reuse is the PRQ-Learning algorithm, a method to prob-
abilistically reuse a set of past policies that solve different
tasks within the same domain. The PRQ-Learning algo-
rithm has two main ideas. First, we introduce the π-reuse
exploration strategy, which is able to probabilistically bias
the exploration to include a given predefined past policy;
and second, we introduce the similarity function that allows
the estimation of the usefulness of past policies with respect
to learning a new task.

We further present the PLPR algorithm, an incremental
method to build a library of policies. When solving a new
problem by policy reuse, the PLPR algorithm determines
how different the learned policy is from the past policies as
a function of the effectiveness of the reuse. If the past and
new policies are “sufficiently” different, PLPR decides to
add the new policy to the library of policies. Otherwise, it
does not. PLPR is therefore capable of identifying a set of
“core” policies that need to be saved to solve any new task
in the domain within a threshold of similarity, δ. Given
δ, our algorithm identifies a set of “δ-core-policies,” as the
basis or learned structure of the domain. Thus our method



to build the Policy Library has a novel “side-effect” in terms
of learning the structure of the domain, i.e., the basis or the
core policies of the domain.

In summary, Policy Reuse contributes to the overall goal
of a lifelong reinforcement learning agent, as (i) it provides a
mechanism to reuse past policies; (ii) it incrementally builds
a policy library; and (iii) it learns an abstract domain struc-
ture in terms of core policies of the domain.

The paper is organized as follows. Section 2 introduces
Policy Reuse for a reinforcement learning agent. Section 3
defines the π-reuse exploration strategy and presents exper-
iment results in a large robot navigation domain. Section 4
formalizes the similarity metric among policies and intro-
duces the PRQ-Learning algorithm. Section 5 presents the
PLPR algorithm. Lastly, Section 6 draws conclusions.

2. POLICY REUSE IN REINFORCEMENT
LEARNING

Reinforcement Learning problems are typically formalized
using Markov Decision Processes (MDPs). An MDP is a
tuple < S,A, T ,R >, where S is the set of states, A is the
set of actions, T is a stochastic state transition function,
T : S × A× S → <, and R is a stochastic reward function,
R : S ×A → <. RL assumes that T and R are unknown.

We focus in RL domains where different tasks can be
solved. The MDP’s formalism is not expressive enough
to represent all the concepts involved in knowledge trans-
fer [11], so we define domain and task separately to handle
different tasks executed in the same domain. We introduce a
task as a specific reward function, while the other concepts,
S, A and T stay constant for all the tasks in the same do-
main. We characterize a domain, D, as a tuple < S,A, T >.
We define a task, Ω, as a tuple < D,RΩ >, where D is a
domain as previously defined, and RΩ is the stochastic and
unknown reward function.

Definition 1. A Domain D is a tuple < S,A, T >, where
S is the set of all states; A is the set of all actions; and T
is a state transition function, T : S ×A× S → <.

Definition 2. A task Ω is a tuple < D,RΩ >, where D is
a domain; and RΩ is the reward function, R : S ×A → <.

We assume that we are solving episodic tasks with absorb-
ing goal states. Thus if si is a goal state, the probability
of transitioning to the same state is 1 (T (si, a, si) = 1),
hence the transition probability to a different state is 0
(T (si, a, sj) = 0 for si 6= sj), and the immediate reward
is 0 (R(si, a) = 0, for all a ∈ A).

A trial or episode starts by locating the learning agent in a
random position in the environment. Each episode finishes
when the agent reaches a goal state or when it executes
a maximum number of steps, H. The agent’s goal is to
maximize the expected average reinforcement per episode,
W , as defined in equation 1:

W =
1

K

K
X

k=0

H
X

h=0

γ
h
rk,h (1)

where γ (0 ≤ γ ≤ 1) reduces the importance of future
rewards, and rk,h defines the immediate reward obtained in
the step h of the episode k, in a total of K episodes.

An action policy, Π, is a function Π : S → A that defines
how the agent behaves. If the action policy was created to
solve a defined task, Ω, we call that action policy ΠΩ. The

gain, or average expected reward, received when executing
an action policy Π in the task Ω is called WΠ

Ω . Lastly, an op-
timal action policy for solving the task Ω is called Π∗

Ω. The

action policy Π∗

Ω is optimal if W
Π

∗

Ω
Ω

≥ WΠ

Ω , for all policy Π
in the space of all possible policies when K → ∞. Action
policies can be represented using the action-value function,
QΠ(s, a), which defines for each state s ∈ S, a ∈ A, the
expected reward that will be obtained if the agent starts to
act from s, executing a, and after it follows the policy Π. So,
the RL problem is mapped to learning the function QΠ(s, a)
that maximizes the expected gain. The learning can be per-
formed using different algorithms, such as Q-Learning [19].

The goal of Policy Reuse is to use different policies, which
solve different tasks, to bias the exploration process of the
learning of the action policy of another similar task in the
same domain. We call Policy Library to the set of past
policies, as defined next.

Definition 3. A Policy Library, L, is a set of n policies
{Π1, . . . , Πn}. Each policy Πi ∈ L solves a task Ωi =<

D,RΩi >, i.e., each policy solves a task in the same domain.
The previous definition does not restrict the character-

istics of the tasks (they may be repeated), nor the char-
acteristics of the policies (they may be sub-optimal). The
scope of Policy Reuse is summarized as: we want to solve
the task Ω, i.e., learn Π∗

Ω; we have previously solved the set
of tasks {Ω1, . . . , Ωn} with n policies stored as a Policy Li-
brary, L = {Π1, . . . , Πn}; how can we use the policy library,
L, to learn the new policy, Π∗

Ω?
Policy Reuse answers this question by adding the past

policies into a learning episode as an probabilistic explo-
ration bias. We define an exploration strategy able to bias
the exploration process towards the policies of the Policy Li-
brary, and a method to estimate the utility of reusing each
of them and to decide whether to reuse them or not. Fur-
thermore, Policy Reuse provides an efficient method to con-
struct the Policy Library. We now detail the Policy Reuse
approach.

3. REUSING A PAST POLICY
We now describe how one policy that solves a particular

task can be used to bias the learning of an action policy for
a similar task. Formally, we want to solve a new task Ω, i.e.,
learn Π∗

Ω. We assume that we are given a Policy Library, say
L = {Π1, . . . , Πn} and that there is an oracle that returns
Πpast as the most similar past policy to Π∗

Ω. We present
how our algorithm reuses the policy Πpast.

Section 4 later defines a similarity metric between poli-
cies for different tasks, and introduces how to automatically
estimate the policy to reuse.

3.1 Theπ-reuse Exploration Strategy
The π-reuse strategy is an exploration strategy able to

bias a new learning process with a past policy. Let Πpast

be the past policy to reuse and Πnew the new policy to be
learned. We assume that we are using a direct RL method
to learn the action policy, so we are learning the related Q

function. Any RL algorithm can be used to learn the Q

function, with the only requirement that it can learn off-
policy, i.e., it can learn a policy while executing a different
one, as Q-Learning does [19].

The goal of π-reuse is to balance random exploration, ex-
ploitation of the past policy, and exploitation of the new
policy, as represented in Equation 2.



a =



Πpast(s) w/prob. ψ

ε − greedy(Πnew(s)) w/prob. (1 − ψ)
(2)

The π-reuse strategy follows the past policy with proba-
bility ψ, and it exploits the new policy with probability of
1−ψ. As random exploration is always required, it exploits
the new policy with an ε-greedy strategy.

Table 1 shows a procedure describing the π-reuse strat-
egy integrated with the Q-Learning algorithm. The proce-
dure gets as an input the past policy Πpast, the number of
episodes K, the maximum number of steps per episode H,
and the ψ parameter. An additional υ parameter is added
to decay the value of ψ in each step of the learning episode.
The procedure outputs the Q function, the policy, and the
average gain obtained in the execution, W , which will play
an important role in similarity assessment, as the next sec-
tions present. The variable ψh keeps the value of υhψ in
each step of each episode.

π-reuse (Πpast, K, H, ψ, υ).

Initialize QΠnew (s, a) = 0, ∀s ∈ S, a ∈ A
For k = 0 to K − 1

Set the initial state, s, randomly.
Set ψ1 ← ψ
for h = 1 to H

With a probability of ψh, a = Πpast(s)
With a probability of 1 − ψh, a = ε-greedy(Πnew(s))
Receive the next state s′, and reward, rk,h

Update QΠnew (s, a), and therefore, Πnew:

QΠnew (s, a) ← (1 − α)Q(s, a)Πnew +

α[r + γ maxa′ QΠnew (s′, a′)]
Set ψh+1 ← ψhυ

Set s ← s′

W = 1
K

PK
k=0

PH
h=0 γhrk,h

Return W , QΠnew (s, a) and Πnew

Table 1: π-reuse Exploration Strategy.

3.2 Experiments
We describe the experiments performed to demonstrate

the usefulness of the π-reuse exploration strategy. We first
describe the experimental domain used.

3.2.1 Robot Navigation Domain
We use a grid-based robot navigational domain (see Fig-

ure 1) with multiple rooms. The environment is represented
by walls, free positions and goal areas, all of them of size
1 × 1. The whole domain is N × M (24 × 21 in our case).
The actions that the robot can execute are “North,” “East,”
“South,” and “West”, all of size one. The final position after
executing an action is noised by adding to the new position
a random value that follows a uniform distribution in the
range (−0.20, 0.20).

Walls block the robot’s motion, i.e., when the robot tries
to execute an action that would crash it into a wall, the
action keeps the robot in its original position.

The robot knows its location in the space through continu-
ous coordinates (x, y). We assume that we have the optimal
uniform discretization of the state space (which consists of
24 × 21 regions) 1. The goal in this domain is to reach the
area marked with ’G’, in a maximum of H actions. When

1Different methods for function approximation have been
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Figure 1: Grid-based Office Domain

the robot reaches it, it is considered a successful episode, and
it receives a reward of 1. Otherwise, it receives a reward of
0.

Figure 1 shows 6 different tasks, Ω1, Ω2, Ω3, Ω4, Ω5 and
Ω, given that the goal states, and therefore, the reward func-
tions, are different. All these tasks are used in the experi-
ments described in the next sections.

We choose the robot navigation domain for experimen-
tation because it has been widely used in transfer learning
papers (e.g., [17, 8, 11]). Transfer learning in more com-
plex domains, as the Keepaway task in robot soccer, requires
a mapping between tasks that use different state and ac-
tion spaces [15, 14]. Such mapping requires a considerable
amount of expert knowledge. Our ongoing research line in-
cludes the study of how our policy reuse algorithm can be
extended to include transfer learning knowledge.

3.2.2 Results
We describe the experimental results of applying differ-

ent exploration strategies for learning the task Ω, shown
in Figure 1(f). Learning has been performed using the Q-
Learning algorithm, for fixed parameters of γ = 0.95 and
α = 0.05, which empirically have demonstrated to be accu-
rate for learning in this domain.

We analyze the learning performance in executing K =
2000 episodes. Each episode consists of following the defined
strategy until the goal is achieved or until the maximum
number of steps (H = 100) is reached. The x axis and the
y axis show the episode or trial number and the average
gain obtained respectively. A value of 0.2 for the episode
200 means that the average gain obtained in the first 200
episodes is 0.2. The results provided are the average of ten
executions. Error bars provide the standard deviation in the
ten executions.

The learning process has been first executed following dif-
ferent exploration strategies that do not use any past pol-
icy. Specifically, we have used four different strategies: (i)
random; (ii) completely greedy; (iii) an ε-greedy (i.e., with
probability ε follows the greedy strategy, and with proba-
bility (1 − ε) acts randomly), with an initial value of ε = 0,
which is incremented by 0.0005 in each episode; (iv) the

successfully applied on this domain [4]. We have simplified
the state space representation to a uniform discretization to
focus on the study of Policy Reuse.
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Figure 2: Results of the learning process for different exploration strategies.

Boltzmann strategy (P (aj) = e
τQ(s,aj)

P

n
p=1 eτQ(s,ap) ), initializing

τ = 0, and increasing it by 5 in each learning episode.
Figure 2(a) shows the results. When acting randomly,

the average gain in learning is almost 0, given that acting
randomly is a very poor strategy. However when a greedy
behavior is introduced, (strategy 1-greedy), the curve shows
a slow increment, achieving values of almost 0.1. The curve
obtained by the Boltzmann strategy does not offer signifi-
cant improvements. The ε-greedy strategy seems to compute
an accurate policy in the initial episodes, and it corresponds
to the highest average gain at the end of the learning.

We then execute the learning with policy reuse. Fig-
ure 2(b) shows the learning curves of different learning pro-
cesses performed with the π-reuse exploration strategy. In
each of them, a different policy has been reused. In the first
one, the policy reused is Π5 (Πpast = Π5), which is optimal
to solve the task Ω5. Such task has its goal into the same
room as the goal of Ω. In the second case, Πpast = Π1,
which solved Ω1. In the last two cases, Πpast = Π2 and Π3

respectively, whose associated tasks (Ω2 and Ω3) are very
different when compared with Ω. All the reused policies are
optimal for their respective tasks.

The parameters used in the Q-Learning update equation
are the same as above (γ = 0.95 and α = 0.05). The param-
eter setting for the π-reuse exploration strategy are ψ = 1,
υ = 0.95, and ε = 1 − ψh. 2

Figure 2(b) shows how, when biasing the exploration pro-
cess for learning the task Ω with the policies Π1 and Π5,
the obtained gain significantly increases within the first few
episodes of the execution. For instance, when reusing Π5,
in only 100 iterations the average gain is higher than 0.15,
and after 400 iterations the value stays around 0.2. When
reusing Π1, the gain is higher than 0.1 after only 200 episodes,
and after 500 episodes it stays around 0.15. In both cases,
the standard deviation is high in the initial episodes, but it
approaches 0 in subsequent episodes.

However when the learning is biased with a very different

2This parameter setting has been chosen after an informal
experimentation, so different values of the parameters could
provide better results. However they are good enough to
evaluate the algorithm and to move on the next steps of the
research on Policy Reuse. Additional information about the
properties of this parameter setting can be found in [5].

policy, as Π2 and Π3, the average gain shown in Figure 2(a)
is below 0.05, so the learning process is even worse than
when learning from scratch.

The results show that reusing a past policy provides a bias
in the exploration process which can speed up the learning
when compared with learning from scratch. The improve-
ment depends on whether the reused policy solves a task
similar to the one we are currently learning. A similarity
metric between tasks is hard to define even for a well struc-
tured domain.

Interestingly, we introduce a similarity metric between
policies based on the usefuness of reuse. For instance, the
results in Figure 2(b) show that the learning curves provide
us information on the similarity between policies. In that
figure, the gain obtained for each of the past policies can
be understood as: (i) an estimation of how similar the pol-
icy reused is to the one we are currently learning; and (ii)
an estimation of how useful the policy reused is in order to
learn the new policy. Actually, the gain obtained by each
past policy can be used to rank the similarity of the past
policies with respect to the new one. In this case, the most
similar policy to ΠΩ is Π5, followed by Π1, Π2 and Π3.

Furthermore, the gain estimated above can be computed
very fast, and in only 25 episodes, the gain of reusing the
policy Π5 significantly outperforms the gain of reusing the
other policies.

4. REUSING A LIBRARY OF POLICIES
We describe now the PRQ-learning algorithm for the ef-

ficient reuse of the policies stored in a Policy Library. We
describe a similarity function that estimates the usefulness
of reusing a specific policy for learning a new one.

4.1 A Similarity Function Between Policies
The exploration strategy π-reuse, as defined in Table 1, re-

turns the learned policy Πnew, and the average gain obtained
in its learning process, W . Let Wi be the gain obtained while
executing the π-reuse exploration strategy, reusing the past
policy Πi. We can use such value to measure the usefulness
of reusing the policy Πi to learn the new policy Πnew. The
next definitions formalize this idea.

Definition 4. Given a policy Πi that solves a task Ωi =<

D, Ri >, and a new task Ω =< D, RΩ >, the Reuse Gain of



the policy Πi on the task Ω, Wi, is the gain obtained when
applying the π-reuse exploration strategy with the policy Πi

to learn the policy Π.
Then the most useful policy to reuse, Πk, from a Library

Policy, L = {Π1, . . . , Πn}, is the one that maximizes the
Reuse Gain when learning such a task, as defined in equa-
tion 3:

Πk = arg
Πi

max(Wi), i = 1, . . . , n (3)

To solve this equation we need to compute the Reuse Gain
for all the past policies. Interestingly, such a gain can be
estimated on-line at the same time that the new policy is
computed. This idea is formalized in the PRQ-Learning
algorithm.

4.2 The PRQ-Learning Algorithm
The goal of the PRQ-learning algorithm is to solve a task

Ω, i.e. to learn an action policy ΠΩ. We have a Policy
Library L = {Π1, . . . , Πn} composed of n past optimal poli-
cies that solve n different tasks respectively. Then two main
questions need to be answered: (i) given the set of poli-
cies {ΠΩ, Π1, . . . , Πn}, which consists of the policies in the
Policy Library plus the ongoing learned policy, what pol-
icy is exploited? (ii) once a policy is selected, what explo-
ration/exploitation strategy is followed?

The answer to the first question is as follows: let Wi be
the Reuse Gain of the policy policy Πi on the task Ω. Also,
let WΩ be the average reward that is received when following
the policy ΠΩ greedily. The solution we introduce consists
of following a softmax strategy using the values WΩ and Wi,
as defined in equation 4, with a temperature parameter τ .
This value is also computed for Π0, which we assume to be
ΠΩ. Equation 4 provides a way to decide whether to exploit
the past policies or the new one.

P (Πj) =
eτWj

Pn

p=0
eτWp

(4)

The answer to the second question (what exploration strat-
egy to follow once a policy is chosen) is an heuristic that
depends on the selected policy. If the policy chosen is ΠΩ,
the algorithm follows a completely greedy strategy. How-
ever, if the policy chosen is Πi (for i = 1, . . . , n), the π-reuse
action selection strategy, defined in previous section, is fol-
lowed instead. In this way, the Reuse Gain of each of the
past policies can be estimated on-line with the learning of
the new policy. Thus, the values required in Equation 4 are
continuously updated each time a policy is used.

All these ideas are formalized in the PRQ-Learning algo-
rithm (Policy Reuse in Q-Learning) shown in Table 2. The
algorithm gets as input: a new task to solve Ω; the policy
library L; the temperature parameter of the softmax policy
selection equation τ , and a decay parameter ∆τ ; and a set
of previously defined parameters: K, H, ψ, υ, γ, α.

The algorithm initializes the new Q function to 0, as well
as the estimated reuse gain of the policies in the library.
Then the algorithm executes the K episodes iteratively. In
each episode, the algorithm decides which policy to follow.
In the first iteration, all the policies have the same proba-
bility to be chosen, given that all Wi values are initialized
to 0. Once a policy is chosen, the algorithm uses it to solve
the task, updating the Reuse Gain for such a policy with the
reward obtained in the episode, and therefore, updating the

PRQL(Ω, L, τ, ∆τ, K, H, ψ, υ, γ, α)

• Given:

1. A new task Ω we want to solve

2. A Policy Library L = {Π1, . . . , Πn}

3. An initial value of the temperature parameter, τ , and an
incremental size, ∆τ , for the Boltzmann policy selection
strategy

4. A maximum number of episodes to execute, K

5. A maximum number of steps per episode, H

6. The parameters ψ and υ for the π-exploration strategy

7. The parameters γ and α for the Q-learning update equa-
tion

• Initialize:

1. QΩ(s, a) = 0, ∀s ∈ S, a ∈ A

2. Initialize WΩ to 0

3. Initialize Wi to 0

4. Initialize the number of episodes where policy ΠΩ has
been chosen, UΩ = 0

5. Initialize the number of episodes where policy Πi has been
chosen, Ui = 0, ∀i = 1, . . . , n

• For k = 1 to K do

– Choose an action policy, Πk, assigning to each policy the
probability of being selected computed by the following
equation (equation 4):

P (Πj) =
e

τWj

P

n
p=0 eτWp

where W0 is set to WΩ

– Execute the learning episode k

∗ If Πk = ΠΩ, execute a Q-Learning episode following
a fully greedy strategy

∗ Otherwise, use the π-reuse exploration strategy to
reuse Πk, i.e. call π-reuse(Πk, 1, H, ψ, υ)

∗ In any case, receive the reward obtained in that
episode, say R, and the updated Q function, QΩ(s, a)

– Set Wk =
WkUk+R

Uk+1

– Set Uk = Uk + 1

– Set τ = τ + ∆τ

• Return the policy derived from QΩ(s, a)

Table 2: PRQ-Learning.

probability to follow each policy. The policy being learned
can also be chosen, although in the initial steps it behaves
as a random policy, given that the Q values are initialized to
0. While new updates are performed over the Q function, it
becomes more accurate, and receives higher rewards when
executed. After executing several episodes, it is expected
that the new policy obtains higher gains than reusing the
past policies, so it will be chosen most of the time.

4.3 Experiments
We present the experiments performed with the PRQ-

Learning algorithm. We demonstrate three main claims:
Firstly, that the performance can be improved if we can
bias the exploration with past policies, even if we have sev-
eral and we do not know apriori which one is the most similar
and/or useful to reuse. Second, that it is possible to deter-
mine which is the most useful policy simultaneously while
learning the new policy. And third, that a balance between



exploring, exploiting past policies, and exploiting the new
policy being learned can be successfully achieved.

We use the PRQ-Learning algorithm for learning the task
Ω, defined in Figure 1(f). We assume that we have 3 different
libraries of policies, so we distinguish three different cases.
In the first one, the policy library is L1 = {Π2, Π3, Π4},
assuming that the tasks Ω2, Ω3 and Ω4, defined in Fig-
ure 1(b), (c) and (d) respectively, were previously solved.
All these tasks are very different from the one we want to
solve, so their policies are not supposed to be very useful
in learning the new one. In the second case, Π1 is added,
so L2 = {Π1, Π2, Π3, Π4}. The third case uses the Policy
Library L3 = {Π2, Π3, Π4, Π5}

The PRQ-Learning algorithm is executed for the three
cases. The learning curves are shown in Figure 3. The pa-
rameters used are the same used in Section 3.2. The only
new parameters are the ones of the Boltzmann policy selec-
tion strategy, τ = 0, and ∆τ = 0.05, obtained empirically.
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Π2  , Π3  , Π ,4 Π5  
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Figure 3: Learning curve when learning the task of
Figure 1(f) reusing different sets of policies.

Figure 3 shows two main conclusions. Firstly, when a very
similar policy is included in the set of policies to be reused,
the improvement on learning is very high. For instance,
when reusing Π1 and Π5, the average gain is greater than
0.1 in only 500 iterations, and more than 0.25 at the end of
the episode. Secondly, when no similar policy is available,
the learning curve is similar to the results obtained when
learning from scratch with the 1-greedy strategy (which is
the strategy followed by PRQ-Learning for the new policy,
as defined by the PRQ-Learning algorithm). This demon-
strates that the PRQ-learning algorithm has discovered that
reusing the past policies is not useful, so it follows the best
strategy available, which is to the 1-greedy strategy with the
new policy.

In summary, we can say that the PRQ-learning algorithm
has demonstrated to successfully reuse a predefined set of
policies. The remaining issue consists of investigating how
to acquire such a set of policies. The next section focuses
on how an agent can build a library of policies.

5. BUILDING A LIBRARY OF POLICIES
We now describe the PLPR algorithm (Policy Library

through Policy Reuse), an algorithm to build a library of
policies. The algorithm is based on an incremental learning

of policies that solve different tasks. The tasks to be solved
are not known apriori, and are sequentially given. Other-
wise, a method to learn them in parallel could be applied [9].

5.1 The PLPR Algorithm
The PLPR algorithm works as follows. Initially the Pol-

icy Library is empty, PL = ∅. When the first task Ω1 is
solved, the corresponding learned policy Π1 is learned with-
out reuse. Π1 is added to the Policy Library and PL =
{Π1}. When a second task needs to be solved, the PRQ-
Learning algorithm is applied reusing Π1. Π2 is learned.
The algorithm makes a decision on whether to add Π2 to
the Policy Library or not. This decision is based on how
similar Π1 is to Π2, following the similarity function we now
introduce.

Definition 5. Given a policy, Πi that solves a task Ωi =<

D, Ri >, a new task Ω =< D, RΩ >, and its respective
optimal policy, Π, Π is δ-similar to Πi (for 0 ≤ δ ≤ 1)
if Wi > δW ∗

Ω, where Wi is the Reuse Gain of Πi on task Ω
and W ∗

Ω is the average gain obtained in Ω when an optimal
policy is followed.

The interesting aspect of this concept is that for any op-
timal policy Π, if we know a past policy which is δ-similar
to it, we also know that such optimal policy can be easily
learned just by applying the π-reuse algorithm with the past
policy. The gain obtained in the learning process (the reuse
gain) will be at least δ times the maximum gain in such a
task. From this definition, we can formalize the concept of
δ-similarity with respect to a Policy Library, L.

Definition 6. Given a Policy Library, L = {Π1, . . . , Πn}
in a domain D, a new task Ω =< D, RΩ >, and its respective
optimal policy, Π, Π is δ-similar with respect to L iff ∃Πi

such as Π is δ-similar to Πi, for i = 1, . . . , n.
If the algorithm finds that a policy Π is δ-similar with

respect to a Policy Library L, then it knows that the policy
Π can be easily learned by reusing the policies in L. Table 3
presents the PLPR algorithm, which is executed each time
that a new task needs to be solved. It gets as an input the
Policy Library and the new task to solve, and outputs the
learned policy and the updated Policy Library.

PLPR Algorithm

• Given:

1. A Policy Library, L, composed of n policies, {Π1, . . . , Πn}

2. A new task Ω we want to solve

3. A δ parameter

• Execute the PRQ-Learning algorithm reusing L. Receive from
this execution ΠΩ, WΩ and Wmax, where:

– ΠΩ is the learned policy

– WΩ is the average gain obtained when the policy ΠΩ was
followed

– Wmax = max Wi, for i = 1, . . . , n

• Update PL using the following equation:

L =



L ∪ {ΠΩ} if Wmax < δWΩ

L otherwise
(5)

Table 3: PLPR Algorithm.

Equation 5 is the update equation for the Policy Library.
It requires the computation of the most similar policy in the



library, which is the policy Πj such as j = argi max Wi, for
i = 1, . . . , n. Wmax is the gain obtained by reusing such
a policy. The new policy learned is inserted in the library
if Wmax is lower than δ times the gain obtained by using
the new policy (WΩ), where δ ∈ [0, 1] defines the similar-
ity threshold, i.e., whether the new policy is δ-similar with
respect to the Policy Library.

The parameter δ hence plays an important role. If δ = 0,
the Policy Library stores only the first policy learned, given
that the average gain obtained by reusing it will be greater
than zero in most cases, due to the positive rewards obtained
by chance. If δ = 1, most of the policies learned are inserted,
as Wmax < WΩ, given that WΩ is maximum if the optimal
policy has been learned. Different δ values in the range
(0, 1) provide different sizes of the library. Thus δ defines
the “resolution” of the library.

The PLPR algorithm has an interesting side effect in terms
of learning the structure of the domain. The Policy Li-
brary is initialized to empty, and a new policy is included
only if it is different enough (depending on the δ threshold)
from the previously stored ones. When the policies stored
are fully representative of the domain, no more policies are
stored. Therefore the obtained library can be considered as
the Basis-Library of the domain, and the stored policies can
be considered as the core-policies of such domain.

5.2 Experiments
We present the experiments performed to learn a Basis-

Library in the navigation domain (Section 3). We perform
a task consisting of the executing K = 2000 episodes. Like
in the previous experiments, each episode consists of a se-
quence of actions until the goal is achieved or until the max-
imum number of actions, H = 100, is reached.

A number, 50, of different tasks are sequentially performed,
each of them with a different goal area, located in different
positions of the different rooms of the domain, as shown in
Figure 4(a). The figure does not represent a unique task
with 50 different goals, but the 50 different goal areas of the
50 different tasks. The results provided are the average of
10 different executions, in which the 50 different tasks are
sequentially performed following a random order. In these
experiments, we use the same parameter settings as earlier
(see Section 4.3).
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Figure 4: Office Domain.

The first element to study is the size of the Policy Library
built while performing the tasks with the PLPR algorithm,
i.e., the number of core-policies stored in the Policy Library.
Figure 5 shows in the y axis the size of the Policy Library,
and in the x axis, the number of tasks performed up to that

moment. As introduced above, when δ = 0, only 1 policy
is stored. When δ = 0.25, the number of core-policies is
around 14. Interestingly, this is very close to the number of
rooms in the domain (15). While increasing δ, the number
of core-policies increases and when δ = 1, almost all the
learned policies are stored.
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Figure 5: Number of eigen-policies obtained.

Figure 4(b) shows an example of the core-policies obtained
in one of the executions with δ = 0.25. The figure represents
the resulting Policy Library composed of 14 core-policies. In
the figure, we assume that a policy is represented by the goal
area of the task that it solves. A core-policy is represented
also by a shaded goal area. The figure demonstrates that
one and only one core-policy has been learned for most of the
rooms. The algorithm has discovered that if two different
tasks are given two goal areas in the same room, their re-
spective policies are very similar, so only one of them needs
to be stored in the Policy Library. We therefore observe that
the PLPR algorithm learns the structure of the domain as
represented by the core-policies.

Figure 6 shows the average gain obtained when perform-
ing the 50 different tasks with the PLPR algorithm, for the
different values of δ. In most of the cases, δ = 0.25, 0.50, 0.75
and 1, the average gain increases up to more than 0.2, and
no significant differences exist between them. Only in the
case of δ = 0, the average gain stays low, around 0.16, given
that δ = 0 generates a Policy Library with only one policy
(the first one learned).
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Figure 6: Results of PLPR.



For comparison purposes, we executed the same learning
process with different exploration strategies as learning from
scratch. In those cases, while new policies are learned from
scratch, the average gain obtained stabilizes around 0.12
for all the strategies, without very significant differences.
Therefore, Policy Reuse can almost reach a 100% gain in
the performance of the 50 tasks over the results obtained
when the 50 tasks are learned from scratch.

6. CONCLUSIONS
We have introduced different algorithms to address the

main challenges of policy reuse in a reinforcement learning
agent. First, the PRQ-Learning algorithm allows to prob-
abilistically bias an exploration learning process by reusing
a Policy Library; the algorithm significantly improves the
learning performance over exploration strategies that learn
from scratch. Second, the PLPR algorithm incrementally
builds the Policy Library; the library is built at the same
time as new policies are learned and past policies are reused.
And last, our method to build the Policy Library allows the
learning of the structure of the domain in terms of a set of
core-policies.

Future ongoing research includes the extension of Policy
Reuse to reuse across different representational frameworks,
including different agents or domains. We envision multiple
agents sharing and reusing policies previously learned to im-
prove the solvability horizon of individual non-reuse based
learning agents.
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