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A Particle Swarm Optimization Approach for
Optimum Design of PID Controller in AVR System
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Abstract—In this paper, a novel design method for determining
the optimal proportional-integral-derivative (PID) controller pa-
rameters of an AVR system using the particle swarm optimization
(PSO) algorithm is presented. This paper demonstrated in detail
how to employ the PSO method to search efficiently the optimal
PID controller parameters of an AVR system. The proposed
approach had superior features, including easy implementation,
stable convergence characteristic, and good computational effi-
ciency. Fast tuning of optimum PID controller parameters yields
high-quality solution. In order to assist estimating the perfor-
mance of the proposed PSO-PID controller, a new time-domain
performance criterion function was also defined. Compared with
the genetic algorithm (GA), the proposed method was indeed
more efficient and robust in improving the step response of an
AVR system.

Index Terms—AVR system, optimal control, particle swarm op-
timization, PID controller.

I. INTRODUCTION

DURING the past decades, the process control techniques in
the industry have made great advances. Numerous control

methods such as adaptive control, neural control, and fuzzy con-
trol have been studied [1]–[5]. Among them, the best known is
the proportional-integral-derivative (PID) controller, which has
been widely used in the industry because of its simple struc-
ture and robust performance in a wide range of operating con-
ditions. Unfortunately, it has been quite difficult to tune prop-
erly the gains of PID controllers because many industrial plants
are often burdened with problems such as high order, time de-
lays, and nonlinearities [1]–[6]. Over the years, several heuristic
methods have been proposed for the tuning of PID controllers.
The first method used the classical tuning rules proposed by
Ziegler and Nichols. In general, it is often hard to determine op-
timal or near optimal PID parameters with the Ziegler-Nichols
formula in many industrial plants [1]–[3].

For these reasons, it is highly desirable to increase the capa-
bilities of PID controllers by adding new features. Many artifi-
cial intelligence (AI) techniques have been employed to improve
the controller performances for a wide range of plants while re-
taining their basic characteristics. AI techniques such as neural
network, fuzzy system, and neural-fuzzy logic have been widely
applied to proper tuning of PID controller parameters [1], [2].
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Many random search methods, such as genetic algorithm
(GA) and simulated annealing (SA) [2]–[9], have recently
received much interest for achieving high efficiency and
searching global optimal solution in problem space. The GA
method is usually faster than the SA method because the GA
has parallel search techniques, which emulate natural genetic
operations. Due to its high potential for global optimization,
GA has received great attention in control systems such as the
search of optimal PID controller parameters. Although GAs
have widely been applied to many control systems, its natural
genetic operations would still result in enormous computational
efforts [5], [6]. In order to overcome the disadvantages, the
use of real-value representation in the GA is proposed to offer
a number of advantages in numerical function optimization
over binary encoding because there is no need to convert
chromosomes to binary type [3]–[5], [15].

Though the GA methods have been employed successfully to
solve complex optimization problems, recent research has iden-
tified some deficiencies in GA performance. This degradation in
efficiency is apparent in applications with highly epistatic ob-
jective functions [i.e., where the parameters being optimized are
highly correlated (the crossover and mutation operations cannot
ensure better fitness of offspring because chromosomes in the
population have similar structures and their average fitness is
high toward the end of the evolutionary process)] [10], [14].
Moreover, the premature convergence of GA degrades its per-
formance and reduces its search capability [10].

Particle swarm optimization (PSO), first introduced by
Kennedy and Eberhart, is one of the modern heuristic algo-
rithms. It was developed through simulation of a simplified
social system, and has been found to be robust in solving
continuous nonlinear optimization problems [11]–[15]. The
PSO technique can generate a high-quality solution within
shorter calculation time and stable convergence characteristic
than other stochastic methods [14]–[16]. Much research is still
in progress for proving the potential of the PSO in solving com-
plex power system operation problems. Researchers including
Yoshida et al. have presented a PSO for reactive power and
voltage control (VVC) considering voltage security assessment.
Their method is compared with the reactive tabu system (RTS)
and enumeration method on practical power system, and has
shown promising results [16]. Naka et al. have presented
the use of a hybrid PSO method for solving efficiently the
practical distribution state estimation problem [17]. Because
the PSO method is an excellent optimization methodology and
a promising approach for solving the optimal PID controller pa-
rameters problem; therefore, this study develops the PSO-PID
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Fig. 1. Block diagram of an AVR system with a PID controller.

controller to search optimal PID parameters. This controller is
called the PSO-PID controller.

The integral performance criteria in frequency domain were
often used to evaluate the controller performance, but these cri-
teria have their own advantages and disadvantages [5], [6]. In
this paper, a simple performance criterion in time domain is pro-
posed for evaluating the performance of a PSO-PID controller
that was applied to the complex control system.

The generator excitation system maintains generator voltage
and controls the reactive power flow using an automatic voltage
regulator (AVR) [18]. The role of an AVR is to hold the terminal
voltage magnitude of a synchronous generator at a specified
level. Hence, the stability of the AVR system would seriously
affect the security of the power system. In this paper, a practical
high-order AVR system with a PID controller is adopted to test
the performance of the proposed PSO-PID controller.

In this paper, besides demonstrating how to employ the PSO
method to obtain the optimal PID controller parameters of an
AVR system, many performance estimation schemes are per-
formed to examine whether the proposed method has better per-
formance than the real-value GA method in solving the optimal
PID controller parameters.

II. LINEARIZED MODEL OF AN AVR SYSTEM

A. PID Controller

The PID controller is used to improve the dynamic response
as well as to reduce or eliminate the steady-state error. The
derivative controller adds a finite zero to the open-loop plant
transfer function and improves the transient response. The inte-
gral controller adds a pole at the origin, thus increasing system
type by one and reducing the steady-state error due to a step
function to zero. The PID controller transfer function is

(1)

B. Linearized Model of an AVR System [16]

The role of an AVR is to hold the terminal voltage magni-
tude of a synchronous generator at a specified level. A simple
AVR system comprises four main components, namely ampli-
fier, exciter, generator, and sensor. For mathematical modeling
and transfer function of the four components, these components
must be linearized, which takes into account the major time con-
stant and ignores the saturation or other nonlinearities. The rea-
sonable transfer function of these components may be repre-
sented, respectively, as follows [16].

• Amplifier model.

The amplifier model is represented by a gain and a
time constant ; the transfer function is

(2)

Typical values of are in the range of 10 to 400. The
amplifier time constant is very small ranging from 0.02 to
0.1 s.

• Exciter model.
The transfer function of a modern exciter may be rep-

resented by a gain and a single time constant

(3)

Typical values of are in the range of 10 to 400. The
time constant is in the range of 0.5 to 1.0 s.

• Generator model.
In the linearized model, the transfer function relating

the generator terminal voltage to its field voltage can be
represented by a gain and a time constant

(4)

These constants are load dependent, may vary be-
tween 0.7 to 1.0, and . between 1.0 and 2.0 s from full
load to no load.

• Sensor model.
The sensor is modeled by a simple first-order transfer

function, given by

(5)

is very small, ranging from of 0.001 to 0.06 s.

C. AVR System With PID Controller

The above models provide an AVR system compensated with
a PID controller block diagram, which is shown in Fig. 1.

D. Performance Estimation of PID Controller

In general, the PID controller design method using the
integrated absolute error (IAE), or the integral of squared-error
(ISE), or the integrated of time-weighted-squared-error (ITSE)
is often employed in control system design because it can be
evaluated analytically in the frequency domain [3]–[6]. The
three integral performance criteria in the frequency domain
have their own advantages and disadvantages. For example, a
disadvantage of the IAE and ISE criteria is that its minimization
can result in a response with relatively small overshoot but
a long settling time because the ISE performance criterion
weights all errors equally independent of time. Although the
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ITSE performance criterion can overcome the disadvantage
of the ISE criterion, the derivation processes of the analytical
formula are complex and time-consuming [6]. The IAE, ISE,
and ITSE performance criterion formulas are as follows:

(6)

(7)

(8)

In this paper, a new performance criterion in the time domain
is proposed for evaluating the PID controller. A set of good con-
trol parameters , , and can yield a good step response
that will result in performance criteria minimization in the time
domain. These performance criteria in the time domain include
the overshoot , rise time , settling time , and steady-state
error . Therefore, a new performance criterion is de-
fined as follows:

min

(9)

where is , and is the weighting factor.
The performance criterion can satisfy the designer re-

quirements using the weighting factor value. We can set to
be larger than 0.7 to reduce the overshoot and steady-state error.
On the other hand, we can set to be smaller than 0.7 to reduce
the rise time and settling time. In this paper, is set in the range
of 0.8 to 1.5.

III. OVERVIEW OF PARTICLE SWARM OPTIMIZATION

A. Features of Particle Swarm Algorithm [10]–[13]

In 1995, Kennedy and Eberhart first introduced the particle
swarm optimization (PSO) method. It is one of the optimization
techniques and a kind of evolutionary computation technique.
The method has been found to be robust in solving problems
featuring nonlinearity and nondifferentiability, multiple optima,
and high dimensionality through adaptation, which is derived
from the social-psychological theory. The features of the
method are as follows [14].

• The method is developed from research on swarm such as
fish schooling and bird flocking.

• It can be easily implemented, and has stable convergence
characteristic with good computational efficiency.

Instead of using evolutionary operators to manipulate the par-
ticle (individual), like in other evolutionary computational algo-
rithms, each particle in PSO flies in the search space with ve-
locity which is dynamically adjusted according to its own flying
experience and its companions’ flying experience. Each particle
is treated as a volumeless particle in -dimensional search space.

Each particle keeps track of its coordinates in the problem
space, which are associated with the best solution (evaluating
value) it has achieved so far. This value is called . An-
other best value that is tracked by the global version of the par-
ticle swarm optimizer is the overall best value, and its location,
obtained so far by any particle in the group, is called .

The PSO concept consists of, at each time step, changing
the velocity of each particle toward its and loca-
tions. Acceleration is weighted by a random term, with separate
random numbers being generated for acceleration toward
and locations.

For example, the th particle is represented as
in the -dimensional space. The best

previous position of the th particle is recorded and represented
as . The index of
best particle among all of the particles in the group is repre-
sented by the . The rate of the position change (velocity)
for particle is represented as .
The modified velocity and position of each particle can be
calculated using the current velocity and the distance from

to as shown in the following formulas:

(10)

(11)

where
number of particles in a group;
number of members in a particle;
pointer of iterations (generations);
velocity of particle at iteration ,

;
inertia weight factor;

, acceleration constant;
, random number between 0 and 1;

current position of particle at iteration ;
of particle ;
of the group.

In the above procedures, the parameter determined the
resolution, or fitness, with which regions be searched between
the present position and the target position. If is too high,
particles might fly past good solutions. If is too small,
particles may not explore sufficiently beyond local solutions. In
many experiences with PSO, was often set at 10–20% of
the dynamic range of the variable on each dimension.

The constants and represent the weighting of the sto-
chastic acceleration terms that pull each particle toward
and positions. Low values allow particles to roam far from
the target regions before being tugged back. On the other hand,
high values result in abrupt movement toward, or past, target re-
gions. Hence, the acceleration constants and were often
set to be 2.0 according to past experiences.

Suitable selection of inertia weight in (12) provides a bal-
ance between global and local explorations, thus requiring less
iteration on average to find a sufficiently optimal solution. As
originally developed, often decreases linearly from about 0.9
to 0.4 during a run. In general, the inertia weight is set ac-
cording to the following equation:

(12)
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where is the maximum number of iterations (genera-
tions), and is the current number of iterations.

IV. IMPLEMENTATION OF A PSO-PID CONTROLLER

In this paper, a PID controller using the PSO algorithm was
developed to improve the step transient response of AVR of a
generator. It was also called the PSO-PID controller. The PSO
algorithm was mainly utilized to determine three optimal con-
troller parameters , , and , such that the controlled system
could obtain a good step response output.

A. Individual String Definition

To apply the PSO method for searching the controller param-
eters, we use the “individual” to replace the “particle” and the
“population” to replace the “group” in this paper. We defined
three controller parameters , , and , to compose an indi-
vidual by ; hence, there are three members
in an individual. These members are assigned as real values. If
there are individuals in a population, then the dimension of a
population is . The matrix representation in a population
is as follows.

B. Evaluation Function Definition

In the meantime, we defined the evaluation function given
in (13) as the evaluation value of each individual in population.
The evaluation function is a reciprocal of the performance
criterion as in (9). It implies the smaller the value
of individual , the higher its evaluation value

(13)

In order to limit the evaluation value of each individual of the
population within a reasonable range, the Routh–Hurwitz cri-
terion must be employed to test the closed-loop system stability
before evaluating the evaluation value of an individual. If the
individual satisfies the Routh–Hurwitz stability test applied to
the characteristic equation of the system, then it is a feasible in-
dividual and the value of is small. In the opposite case,
the value of the individual is penalized with a very large
positive constant.

C. Proposed PSO-PID Controller

This paper presents a PSO-PID controller for searching the
optimal or near optimal controller parameters , , and ,
with the PSO algorithm. Each individual contains three mem-
bers , , and . The matrix representation of the initial pop-
ulation is described in Section IV-A. Its dimension is .

The searching procedures of the proposed PSO-PID con-
troller were shown as below.

Step 1) Specify the lower and upper bounds of the three con-
troller parameters and initialize randomly the indi-
viduals of the population including searching points,
velocities, s, and .

Step 2) For each initial individual of the population,
employ the Routh-Hurwitz criterion to test the
closed-loop system stability and calculate the values

of the four performance criteria in the time domain,
namely , , , and .

Step 3) Calculate the evaluation value of each individual in
the population using the evaluation function given
by (13).

Step 4) Compare each individual’s evaluation value with its
. The best evaluation value among the is

denoted as .
Step 5) Modify the member velocity of each individual

according to (14)

(14)

where the value of is set by (12). When is 1,
represents the change in velocity of controller

parameter. When is 2, represents the change in
velocity of controller parameter.

Step 6) If , then

If , then .
Step 7) Modify the member position of each individual

according to (15)

(15)

where and represent the lower and upper
bounds, respectively, of member of the individual

. For example, when is 1, the lower and upper
bounds of the controller parameter are and

, respectively.
Step 8) If the number of iterations reaches the maximum,

then go to Step 9. Otherwise, go to Step 2.
Step 9) The individual that generates the latest is an

optimal controller parameter.

V. DYNAMIC BEHAVIORS ESTIMATION

In order to examine the dynamic behaviors and convergence
characteristic of the proposed method, two statistical indexes,
namely the mean value and the standard deviation of
evaluation values of all individuals in the population during the
computing processes, were used. The mean value can display
the accuracy of the algorithm, and the standard deviation can
measure the convergence speed of the algorithm. The formulas
for calculating the mean value and the standard deviation of
evaluation values are as follows, respectively:

(16)

(17)

where is the evaluation value of the individual and
is the population size.
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Fig. 2. Block diagram of an AVR system with a PSO-PID controller.

TABLE I
RANGE OF THREE CONTROLLER PARAMETERS

Fig. 3. Terminal voltage step response of an AVR system without PID
controller.

VI. NUMERICAL EXAMPLES AND RESULTS

A. AVR System Parameters

To verify the efficiency of the PSO-PID controller, a practical
high-order AVR system was tested. The AVR system has the
following parameters:

The block diagram of the AVR system with a PID controller
is shown in Fig. 2. The lower and upper bounds of the three
controller parameters were as shown in Table I.

Fig. 3 shows the original terminal voltage step response of the
AVR system without a PID controller. To simulate this case, we
found that , , , and

.

B. Performance of the PSO-PID Controller

According to the trials, the following PSO parameters are
used for verifying the performance of the PSO-PID controller
in searching the PID controller parameters:

• the member of each individual is , , and ;
• population size ;
• inertia weight factor is set by (12), where

and ;
• the limit of change in velocity ,

, and ;
• acceleration constant and .

The PSO-PID controller shown in Fig. 2 then replaced the
PID controller; the simulation results that showed the best so-
lution were summarized in Table II. Figs. 4 and 5 showed the

TABLE II
BEST SOLUTION USING PSO-PID CONTROLLER

WITH THE DIFFERENT � VALUES

Fig. 4. Convergence tendency of the PSO-PID controller.

Fig. 5. Terminal voltage step response of an AVR system with the PSO-PID
controller.

convergence characteristics of the PSO-PID controller and ter-
minal voltage step response of the AVR system at different sim-
ulation conditions, respectively. As can be seen, through about
50 iterations (50 generations), the PSO method can prompt con-
vergence and obtain good evaluation value. These results show
that the PSO-PID controller can search optimal PID controller
parameters quickly and efficiently.

C. Comparison of Two Proposed Controllers

In order to emphasize the advantages of the proposed
PSO-PID controller, we also implemented the GA-PID con-
troller derived from the real-value GA method with the Elitism
scheme [5], [6]. We have compared the characteristics of
the two controllers using the same evaluation function and
individual definition. The following real-value GA parameters
have been used:
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TABLE III
SUMMARY OF SIX SIMULATION RESULTS

Fig. 6. Terminal voltage step response of an AVR system with different
controllers (Example I, � = 1:0, generations = 50).

Fig. 7. Terminal voltage step response of an AVR system with different
controllers (Example II, � = 1:0, generations = 100).

• the members of each individual are , , and ;
• population size ;
• crossover rate ;
• mute rate ;
• .

Two proposed controllers and their performance evaluation
criteria in the time domain were implemented by Matlab and
control system toolbox, and executed on a Pentium III 550 per-
sonal computer with 256-MB RAM.

1) Terminal Voltage Step Response: There were six simula-
tion examples to evaluate the performance of both the PSO-PID
and the GA-PID controllers. In each simulation example, the
weighting factor in the performance criterion and the number
of iterations (generations) were set as follows:

The simulation results that showed the best solution were
summarized in Table III. As can be seen, both controllers
could give good PID controller parameters in each simulation
example, providing good terminal voltage step response of the
AVR system. Table III also shows the four performance criteria
in the time domain of each example. As revealed by the above
four performance criteria, the PSO-PID controller has better
performance than the GA-PID controller.

Fig. 8. Terminal voltage step response of an AVR system with different
controllers (Example III, � = 1:0, generations = 150).

Fig. 9. Terminal voltage step response of an AVR system with different
controllers (Example IV, � = 1:5, generations = 50).

Fig. 10. Terminal voltage step response of an AVR system with different
controllers (Example V, � = 1:5, generations = 100).

Figs. 6–11 show the terminal voltage step response of the
AVR system of the six simulation examples. As can be seen,
the PSO-PID controller could create very perfect step response
of the AVR system, indicating that the PSO-PID controller is
better than the GA-PID controller.

2) Convergence Characteristic: Under the same conditions,
we performed simulations using the two proposed controllers to
compare their convergence characteristics. Fig. 12 showed their
convergence properties. As can be seen, the PSO-PID controller
has better evaluation value than the GA-PID controller. The re-
sults showed that the PSO-PID controller could obtain higher
quality solution, indicating the drawbacks of GA method men-
tioned in [10] and [14].

We also performed 100 trials for both proposed controllers
with different random number to observe the variation in their
evaluation values. In addition, the maximum, minimum, and av-
erage evaluation values were obtained by the two methods. The
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TABLE IV
COMPARISON OF THE EVALUATION VALUE BETWEEN BOTH METHODS (� = 1:5, GENERATION = 100)

Fig. 11. Terminal voltage step response of an AVR system with different
controllers (Example VI, � = 1:5, generations = 150).

Fig. 12. Convergence tendency of the evaluation value of both methods.

Fig. 13. Comparison of the statistical evaluation values of both methods
(100 trials).

results were shown in Fig. 13 and Table IV. As can be seen, the
evaluation values of the PSO-PID controller generated fluctua-
tion in a small range , thus verifying that the
PSO-PID controller has better convergence characteristic.

Fig. 14. Convergence tendency of both � and � of evaluation values using
both methods (Example IV, � = 1:5, generations = 150).

TABLE V
COMPARISON OF COMPUTATION EFFICIENCY OF BOTH METHODS (� = 1:5)

3) Dynamic Convergence Behavior: In addition, during the
evolutionary processing of the two proposed methods, after each
iteration, the mean value and the standard deviation of
the evaluation values of all individuals in the population were
recorded for observing the dynamic convergence behavior of the
individuals in population. Fig. 14 displays the recorded data in
Example VI. As seen in the simulation, with the same number of
iterations, though both controllers can obtain stable mean evalu-
ation value under the same evaluation function and simula-
tion conditions, the GA-PID controller brings premature conver-
gence such that the evaluation value and mean value are smaller.
Conversely, the PSO-PID controller has better evaluation value
and mean value, showing that it can achieve better accuracy. Si-
multaneously, we can also find that the convergence tendency of
the standard deviation of evaluation values in the PSO-PID
controller is much faster than the GA-PID controller, because
the latter presented fluctuation resulted from the mutation in the
GA method. This can prove that the PSO method has better con-
vergence efficiency in solving the power optimization problems.

4) Computation Efficiency: The comparison of computation
efficiency of both methods is shown in Table V. As can be seen,
because the PSO method does not perform the selection and
crossover operations in evolutionary processes, it can save some
computation time compared with the GA method, thus proving
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that the PSO-PID controller is more efficient than the GA-PID
controller.

VII. DISCUSSION AND CONCLUSION

This paper presents a novel design method for determining
the PID controller parameters using the PSO method. The
proposed method integrates the PSO algorithm with the new
time-domain performance criterion into a PSO-PID controller.
Through the simulation of a practical AVR system, the results
show that the proposed controller can perform an efficient
search for the optimal PID controller parameters.

In addition, in order to verify it being superior to the GA
method, many performance estimation schemes are performed,
such as

• multiple simulation examples for their terminal voltage
step responses;

• convergence characteristic of the best evaluation value;
• dynamic convergence behavior of all individuals in popu-

lation during the evolutionary processing;
• computation efficiency.

It is clear from the results that the proposed PSO method can
avoid the shortcoming of premature convergence of GA method
and can obtain higher quality solution with better computation
efficiency. Therefore, the proposed method has more robust sta-
bility and efficiency, and can solve the searching and tuning
problems of PID controller parameters more easily and quickly
than the GA method.

Different PSO optimization parameters are required for
solving different problems in practical application, such as
the number of agents (individuals), weight factors and

, acceleration factors and , and the limit of change
in velocity . Hence, how to select suit parameters for the
target problem, such as the sensitivity analysis of optimization
parameters for finding the best parameters, is one of our future
works.
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