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Abstract

Mobile robots are increasingly populating our human environments. To
interact with humans in a socially compliant way, these robots need to un-
derstand and comply with mutually accepted rules. In this paper, we present
a novel approach to model the cooperative navigation behavior of humans.
We model their behavior in terms of a mixture distribution that captures both
the discrete navigation decisions, such as going left or going right, as well as
the natural variance of human trajectories. Our approach learns the model pa-
rameters of this distribution that match, in expectation, the observed behavior
in terms of user-defined features. To compute the feature expectations over
the resulting high-dimensional continuous distributions, we use Hamiltonian
Markov chain Monte Carlo sampling. Furthermore, we rely on a Voronoi
graph of the environment to efficiently explore the space of trajectories from
the robot’s current position to its target position. Using the proposed model,
our method is able to imitate the behavior of pedestrians or, alternatively, to
replicate a specific behavior that was taught by tele-operation in the target
environment of the robot. We implemented our approach on a real mobile
robot and demonstrate that it is able to successfully navigate in an office
environment in the presence of humans. An extensive set of experiments
suggests that our technique outperforms state-of-the-art methods to model
the behavior of pedestrians, which makes it also applicable to fields such as
behavioral science or computer graphics.

1 Introduction

In the near future, more and more mobile robots will populate our human envi-
ronments. Applications include robots that provide services in shopping malls,
robotic co-workers in factories, or even assistive robots in healthcare. Traditional
approaches to mobile robot navigation, such as moving on time-optimal paths, are
not always desirable for such robots. Instead, robots that navigate in the same
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Figure 1: Our method is able to learn a model of human cooperative navigation
behavior from demonstrations. We learn the model parameters of a mixture distribu-
tion over composite trajectories to capture the discrete and continuous aspects of
the behavior. The learned model generalizes to new situations and allows us to draw
trajectory samples that capture the stochasticity of natural navigation behavior.

environment as humans should understand and comply with social norms that allow
humans to smoothly evade each other even in crowded environments. In partic-
ular, humans tend to cooperate to avoid collisions. To enable socially compliant
human-robot interaction that does not disturb nearby humans, mobile robots need
to engage in such cooperative navigation. To this end, we need accurate models of
the navigation behavior of interacting pedestrians.

In this paper, we propose an approach that allows a mobile robot to learn
such models from observations of pedestrians. Specifically, our goal is to model
the decision-making process of the pedestrians that ultimately makes them move
on the continuous trajectories that we can observe. This decision-making process
typically involves continuous and discrete navigation decisions. Whereas continuous
navigation decisions affect the resulting trajectories in terms of distances to obstacles
and higher-order dynamics such as velocities and accelerations, discrete navigation
decisions determine whether to pass obstacles or other agents on the left or on
the right side. In addition to that, human navigation behavior is not deterministic.
Humans rather exhibit stochastic properties, i. e., their trajectories vary from run to
run, which becomes apparent when they repeatedly navigate in the same situation.
To capture these properties, we model the navigation behavior in terms of a joint
mixture distribution over the trajectories of all the agents involved in an encounter.
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As illustrated in Figure 1, this distribution comprises a probability distribution
over the outcomes of the discrete decision-making process. For each outcome, a
continuous distribution captures the natural variance of the agents’ trajectories. We
propose a feature-based maximum entropy learning approach to infer the parameters
of the model that matches the observed behavior in expectation. The resulting model
allows the robot to predict the behavior of multiple agents in new situations in terms
of a joint probability distribution over their trajectories.

A mobile robot can use the learned model to predict the behavior of nearby
pedestrians and to react accordingly. To this end, the robot maintains a probability
distribution over its own actions and the actions of the pedestrians in the current sit-
uation. The most likely interaction behavior encodes a prediction of the pedestrians’
behavior as well as the desired behavior of the robot itself, according to the learned
model. In some applications, however, it may not be desirable to simply make the
robot replicate human navigation strategies. In these cases, the proposed model
also allows us to teach the robot a certain behavior by tele-operation, which is an
intuitive way, especially for non-experts. During tele-operation, the robot learns
how to behave during encounters with pedestrians.

Our approach assumes cooperative agents, i.e., agents that behave in a way
that allows all involved agents to reach their targets as comfortably as possible.
This assumption, however, does not hold in certain situations. For example, to
model human behavior in evacuation scenarios, it would be necessary to introduce
game-theoretic aspects, where each agent tries to increase its own utility. However,
our experiments suggest that the assumption of cooperative agents is reasonable for
navigation under normal circumstances, such as navigating in an office environment.

The contribution of this work is a probabilistic framework to learn the behavior
of interacting agents such as pedestrians from demonstration. A key challenge
of such a learning approach is the so-called forward problem, i. e., computing
for a given model the expected feature values with respect to the distribution
over the high-dimensional space of continuous trajectories. We propose to use
Markov chain Monte Carlo (MCMC) sampling and exploit that the distributions
over observed trajectories of interacting agents are highly structured. The use of
a spline-based trajectory representation makes it possible to efficiently compute
the gradient of the probability density, which allows our method to guide the
sampling process towards regions of high probability using the Hybrid Monte
Carlo (HMC) algorithm (Duane et al., 1987). Therefore, our method is able to
capture the stochasticity of observed trajectories, which is in contrast to existing
approaches that learn deterministic models that do not replicate well the stochastic
behavior of natural agents. Furthermore, we present efficient techniques to explore
the space of homotopy classes of the trajectories using a Voronoi graph of the
environment. In addition, we present methods to integrate the learned model into a
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navigation framework for mobile robots. An extensive set of experiments suggests
that our model outperforms state-of-the-art methods to model pedestrian navigation
behavior. The experiments include a Turing test in which the trajectories computed
by our approach were perceived as more human than the trajectories computed by
other methods. The experiments also evaluate the performance of our approach in
navigation tasks with a real robot. This paper builds on our previous work presented
in (Kretzschmar et al., 2014; Kuderer et al., 2012, 2013, 2014) and provides a
unified presentation of our approach, a more detailed description of the proposed
methods, and a more comprehensive experimental evaluation.

The remainder of this paper is structured as follows. In the next section, we
review work related to our approach. In Section 3, we present our learning frame-
work to modeling the navigation behavior of pedestrians. In Section 4, we apply
our model to mobile robot navigation in populated environments. In Section 5, we
present a thorough experimental evaluation of our method.

2 Related Work

There is a wide range of literature on learning policies from demonstrations (Argall
et al., 2009). Atkeson and Schaal (1997) developed one of the pioneering approaches
to infer a mapping from state features to actions to directly mimic observed behavior.
More recently, Ng and Russell (2000) applied inverse reinforcement learning (IRL)
to recover a cost function that explains observed behavior. In particular, Abbeel and
Ng (2004) suggest to match features that capture relevant aspects of the behavior
that is to be imitated. However, matching features does not lead to a unique cost
function.

To resolve this ambiguity, Ziebart et al. (2008) present Maximum Entropy IRL
that relies on the principle of maximum entropy (Jaynes, 1978) and, hence, aims
at finding the policy with the highest entropy subject to feature matching. Their
method works well in discrete state-action spaces of low dimensionality. However,
discretizing the state-action spaces does not scale well to continuous trajectories,
especially when taking into account higher-order dynamics such as velocities and
accelerations. Ratliff et al. (2006); Vernaza and Bagnell (2012); Ziebart et al.
(2009) amongst others applied these indirect learning approaches to a variety of
problems including route planning for outdoor mobile robots and learning pedestrian
navigation behavior. Ziebart et al. (2012) cast the trajectories of pointing devices,
such as a computer mouse, as a control problem in order to predict the targets of
users. Kitani et al. (2012) use Maximum Entropy IRL to infer the preferences of
pedestrians with respect to vision-based physical scene features such as sidewalks.
Their model predicts the trajectory of a pedestrian taking into account these features

4



using a discrete Markov decision process. Similarly, Kim and Pineau (2015) use
a Bayesian inverse reinforcement learning approach to infer a cost function for
socially adaptive path planning, where the cost function is expressed in terms of
features that are computed based on RGB-D sensor readings.

Inspired by Abbeel and Ng (2004) and Ziebart et al. (2008), our approach
aims to find maximum entropy distributions that match observed feature values.
However, in contrast to the abovementioned techniques, our approach reasons about
joint probability distributions over trajectories of multiple agents whose actions
potentially mutually affect each other. In addition to that, our method reasons
about the agents’ trajectories in continuous state spaces including their higher-order
dynamics.

In many inverse reinforcement learning approaches, estimating the feature
expectations is a challenging problem, especially in high-dimensional state spaces
of continuous trajectories. To this end, Boularias et al. (2011) apply importance
sampling to compute the gradient of the model parameters while Vernaza and
Bagnell (2012) constrain the features to have a certain low-dimensional structure.
Kalakrishnan et al. (2013) propose to assume the demonstrations to be locally
optimal and sample continuous trajectories by adding Gaussian noise to the model
parameters. Kuderer et al. (2012) approximate the feature expectations using Dirac
delta functions at the modes of the distribution. This approximation, however, leads
to suboptimal models when learning from imperfect human navigation behavior
since its stochasticity is not sufficiently captured. In practice, this method under-
estimates the feature values and thus favors samples from highly unlikely homotopy
classes. In contrast to that, the approach that we present in this paper efficiently
estimates the feature expectations using Hybrid Monte Carlo sampling (Duane
et al., 1987), which is applicable to arbitrary differentiable features. Hybrid Monte
Carlo ideas are also used by Ratliff et al. (2009b) in the context of globally robust
trajectory optimization.

In contrast to probabilistic learning approaches, many researchers have proposed
models to capture the complex navigation behavior of humans (Bitgood and Dukes,
2006; Christensen and Pacchierotti, 2005; Hall, 1966; Yoda and Shiota, 1996, 1997).
Zambrano et al. (2012) divides these methods to model human navigation behavior
into steering models and optimization models.

Steering models describe human navigation behavior as a dynamical system
in which a set of rules determines the agent’s immediate action given its current
state in the environment (Helbing and Johansson, 2009; Helbing and Molnar, 1995;
Johansson et al., 2007; Lerner et al., 2007; Müller et al., 2008; Warren, 2006). The
social forces method presented by Helbing and Molnar (1995) models pedestrian
motion behavior in terms of forces that correspond to internal objectives of humans,
such as the desire to reach a target and to avoid obstacles. Subsequently, several
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authors used parameter learning methods to fit the social forces model to observed
crowd behavior (Helbing and Johansson, 2009; Johansson et al., 2007). Although
the social forces model seems to perform well at simulating crowds, we found that
the model has shortcomings in predicting the movements of individual pedestrians,
particularly during evasive maneuvers. Pandey and Alami (2009) and Kirby et al.
(2009) implement predefined social rules on a robot that operates in an environ-
ment populated by pedestrians. Similarly, Müller et al. (2008) proposed a method
that allows a mobile robot to follow people that walk in the same direction as the
robot. Lerner et al. (2007) infer a database of navigation rules from video data.
Optimization models cast pedestrians as utility-optimizing agents that minimize a
cost function comprising relevant properties of human navigation (Arechavaleta
et al., 2008; Hoogendoorn and Bovy, 2003; Mombaur et al., 2010; Pham et al.,
2007). There are methods that minimize the walking discomfort in terms of acceler-
ations and distances to other pedestrians (Hoogendoorn and Bovy, 2003), maximize
smoothness of the trajectory (Pham et al., 2007), or minimize the derivative of the
curvature (Arechavaleta et al., 2008). Mombaur et al. (2010) present an optimization
model that allows a humanoid robot to imitate human-like trajectories. Some of
the abovementioned optimization approaches adapt the parameters of the models
such that the resulting trajectories resemble training examples, which is known as
inverse optimal control. In contrast to these non-probabilistic methods, we capture
the stochasticity of human navigation behavior by modeling the behavior in terms of
a probability distribution over the agents’ trajectories. This also allows our method
to learn from non-optimal demonstrations.

Trautman and Krause (2010) demonstrate that mobile robot navigation fails in
densely populated environments unless the robot takes into account the interaction
between itself and the humans. In contrast to many other approaches that model
agents independently of the others, their proposed method takes into account mutual
interaction to plan composite trajectories. In Trautman et al. (2013), the authors use
their method to navigate a robot through a crowded cafeteria. Similarly, van den
Berg et al. (2009) present an approach to reciprocal collision avoidance that allows a
set of mobile robots to navigate without collisions. The social forces model (Helbing
and Molnar, 1995) as well as the data-driven approach presented by Lerner et al.
(2007) implicitly model cooperative navigation behavior. We explicitly model
cooperative behavior by jointly predicting the trajectories of all interacting agents.

The abovementioned approaches aim at modeling the navigation behavior of
humans and can therefore be used to foster efficient and socially compliant mobile
robot navigation in populated environments. Several reactive collision avoidance
methods were successfully applied to mobile robot navigation in crowded or dy-
namic environments. Such methods include the dynamic window approach by Fox
et al. (1997), the velocity obstacles by Fiorini and Shillert (1998) as well as its
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extension to multiple obstacles, the reciprocal velocity obstacles (RVO) (van den
Berg et al., 2009). To achieve more human-like behavior, Guy et al. (2010) extend
RVO by introducing response and observation time to other agents. Whereas the ap-
proaches described above seek to avoid dynamic obstacles such as pedestrians, they
do not consider human predictive abilities, which sometimes results in unnatural
robot movements.

Our model considers trajectories in distinct homotopy classes, which result from
the different choices of how to bypass obstacles or other agents. Other authors
also investigated methods to compute homotopically distinct paths for mobile robot
navigation. Bhattacharya et al. (2012) perform an A∗ search on an arbitrary graph
representation of the environment that they augment with theH-signature to capture
topological information. However, their graph may contain multiple paths to the
goal of the same homotopy class. To lower the computational burden, we compute
an abstract graph in which each path corresponds to a unique homotopy class.
Demyen and Buro (2006) propose a method for efficient triangulation-based path
planning that searches an abstract graph that represents the environment. Similar to
our work, the resulting path through this graph is then mapped back to a trajectory
in the original 2D environment. Whereas Demyen and Buro (2006) assume a
polygonal representation of the environment, we allow arbitrary obstacles on grid
maps, which enables us to incorporate online real-world sensor data. Vernaza et al.
(2012) point out that the vector of winding angles around each obstacle is invariant
for all trajectories of a given homotopy class. We also use the vector of winding
angles to compute a unique identifier that fully describes the homotopy class of a
composite trajectory, which is useful during navigation.

For mobile robot navigation we utilize the model of interactive navigation
behavior that we present in this paper. To find the most likely trajectory in each
homotopy class, we apply gradient-based optimization. Similarly, many authors
presented approaches to find optimal trajectories with respect to a given cost function
in the context of path planning for mobile robots. For instance, Sprunk et al. (2011)
use a spline-based representation of the trajectories and optimize the corresponding
control points to find time-optimized, curvature continuous trajectories that obey
acceleration and velocity constraints. Similarly, Gulati et al. (2009) optimize
trajectories for an assistive mobile robot with respect to user comfort. Ratliff et al.
(2009a) present a general framework for trajectory optimization, which they apply
to high-dimensional motion planning for robots. It is well-known that such gradient-
based optimization methods often fail to find globally optimal solutions since they
are prone to get stuck in local minima. Kalakrishnan et al. (2011) therefore propose
to use stochastic trajectory optimization to overcome these local minima. However,
large state spaces due to complex settings make it infeasible to efficiently find
globally optimal solutions by uniformly sampling trajectories. In contrast to that,
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our model explores the state space by simultaneously searching regions that belong
to different homotopy classes, which each correspond to a local minimum.

3 Modeling Human Cooperative Navigation Behavior

The objective of our approach is to learn a model of human cooperative navigation
behavior from observed trajectories. We model the decision-making process that
ultimately leads to the observed trajectories of the agents as a joint probability
distribution over the trajectories of all the agents. We assume that the observed
trajectories are samples drawn from this distribution. We furthermore assume that
the probability distribution depends on cartain features of the trajectories. Our goal
is to find the probability distribution that explains the observed trajectories in terms
of feature expectations. To this end, we apply the principle of maximum entropy,
which we discuss in the following.

3.1 The Principle of Maximum Entropy and Feature Matching

In general, the problem of learning from demonstration is to find a model that
explains the observed demonstrations and that generalizes to new situations. If we
can model the observed behavior in terms of a probability distribution, learning
translates to finding the distribution from which the observed samples xk ∈ D are
drawn. To capture the relevant properties of the behavior, we define a feature vector

f : X → Rn (1)

that maps states x ∈ X to a vector of real values. This allows us to compute
empirical feature values fD of the demonstrations

fD =
1

|D|
∑
xk∈D

f(xk), (2)

that encode the properties of the observed behavior we want to learn. Following
Abbeel and Ng (2004), we aim to find the distribution p(x) that matches these
empirical feature values in expectation:

Ep(x)[f(x)] = fD. (3)

In general, however, there is not a unique distribution that matches the features.
Ziebart et al. (2008) resolve this ambiguity by applying the principle of maximum
entropy (Jaynes, 1978), which states that the distribution with the highest entropy
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represents the given information best since it does not favor any particular outcome
besides the observed constraints.

Following Ziebart et al. (2008), we are interested in the distribution that matches
the feature expectations, as given in Equation (3), without implying any further
assumptions. In this section, we outline how their approach can be applied to
continuous spaces. The principle of maximum entropy states that the desired
distribution maximizes the differential entropy

argmax
p

H(p) = argmax
p

∫
x
−p(x) log p(x)dx, (4)

subject to the constraint ∫
x
p(x) dx = 1, (5)

that enforces the distribution to integrate to one, and subject to the constraints

∀i fiD = Ep(x)[fi(x)] =

∫
x
p(x)fi(x)dx (6)

that enforce the empirical features values to match the expected feature values for
all features fi. Introducing Lagrangian multipliers α and θi for these constraints
yields the maximization problem

p?, α?,θ? = argmax
p,α,θ

h(p, α,θ), (7)

where

h(p, α,θ) =

∫
x
−p(x) log p(x) dx

− α
(∫

x
p(x) dx− 1

)
−
∑
i

θi

(∫
x
p(x)fi(x) dx− fiD

)
. (8)

Applying the Euler-Lagrange equation from the calculus of variations (see (Fox,
1987, Sec. 1.4)) to Equation (8) implies that the probability distribution p?(x) has
the structure

pθ(x) =
1

Z(θ)
exp(−θT f(x)), (9)

where Z(θ) is a normalization factor to satisfy Equation (5). Thus, the structure
of the distribution that maximizes entropy under the constraint of feature matching
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depends only on the features. However, the parameter vector θ? depends on the
training samples xk ∈ D. Unfortunately, it is not feasible to compute θ? analytically.
However, we can apply gradient-based optimization techniques to determine θ?.
The gradient is given by the derivative of Equation (8) with respect to the parameter
vector:

∂

∂θ
h(p, α,θ) = Epθ(x)[f(x)]− fD. (10)

There is also a different point of view that leads to the same result. If we assume
an exponential family distribution, as given in Equation (9), the log-likelihood of
the observed behavior D is given by

Lpθ(D) = log
1

Z(θ)
exp(−θT fD), (11)

and its derivative with respect to θ is given by

∂

∂θ
Lpθ(D) =

∫
x
pθ(x)f(x) dx− fD = Epθ(x)[f(x)]− fD.

Consequently, the problem of finding the maximum entropy distribution subject
to feature matching is equivalent to maximizing the likelihood of the training data
when assuming an exponential family distribution (Jaynes, 1978).

To summarize, our goal is to find the distribution that matches, in expectation,
the feature values of a set of demonstrations. By applying the principle of maximum
entropy it follows that this distribution is an exponential family distribution Equa-
tion (9). Therefore, finding the desired distribution translates to computing the
parameter vector θ? that leads to feature matching. Computing θ? analytically is
not feasible, but we can compute the gradient with respect to these parameters and,
consequently, apply gradient-based optimization.

3.2 Modeling Continuous Navigation Decisions

We apply the principle of maximum entropy and feature matching as introduced
above to learn the navigation behavior of interacting agents by observing a set
D of their trajectories x ∈ X . To this end, we define a feature vector f that
captures the properties of the navigation behavior that we want to take into account.
We are interested in the distribution p(x) over the trajectories that matches the
observations D in terms of these features, as expressed in Equation (3), which we
restate here for convenience:

Ep(x)[f(x)] = fD. (12)
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Applying the principle of maximum entropy, which we discussed in Section 3.1,
leads to an exponential family distribution

pθ(x) =
1

Z(θ)
exp(−θT f(x)), (13)

where Z(θ) is a normalization factor. The term

θT f(x) =
∑
i

θifi(x) (14)

in the exponent can be interpreted as a cost function that depends on a weighted
sum of feature values. Hence, our model assumes that the agents are exponentially
more likely to choose trajectories with lower cost.

Learning the navigation behavior in this context boils down to finding the fea-
ture weights θ that lead to feature matching, as expressed in Equation (12). As
described in the previous section, we find these feature weights using gradient-based
optimization, where the gradient is given by Equation (10). After convergence of
the optimization process, the gradient vanishes and thus the probability distribu-
tion pθ(x) matches the empirical feature values.

In the following, we present a continuous representation of the agents’ trajecto-
ries and introduce features that capture physical properties of the trajectories such
as velocities and accelerations. We furthermore propose a method to compute the
feature expectations with respect to the continuous probability distributions that are
necessary to find the parameters of the probability distribution.

3.2.1 Spline-Based Representation

We represent the planar movements of an agent ai ∈ A in terms of its trajectory
xai(t) that continuously maps time t to the continuous configuration space R2

of the agent at time t. This function continuously defines the position of the
agent ai over time. In general, the space of continuous trajectories in R2 has infinite
dimensionality. To represent the trajectories in a finite-dimensional space, we use
cubic splines. Specifically, for each interval [tj , tj+1] with t0 ≤ t1 ≤ · · · ≤ tm the
restriction of xai(t) to [tj , tj+1] is a two-dimensional polynomial of degree three.
This allows us to parameterize the trajectories by a finite set of control points xai(tj)
and ẋai(tj) for each j ∈ {0, . . . ,m}, which fully specifies the trajectory. In our
representation, two consecutive spline segments “share” control points. Hence, we
have equal position and velocity at the intersections. We can furthermore efficiently
compute the positions xai(t), the velocities ẋai(t), and the accelerations ẍai(t) at
each time step in closed form. To represent the joint behavior of all agents ai ∈ A,

11



we consider composite trajectories

x = (xa1(t), . . . , xan(t)) ∈ X . (15)

A composite trajectory encodes the interactive navigation behavior in a certain
situation, i. e., how the agents evade each other. Note, that our model considers prob-
ability distributions over these composite trajectories. This captures the cooperative,
joint behavior of all agents involved in the interaction process.

3.2.2 Features

According to recent studies (Hoogendoorn and Bovy, 2003), pedestrians seem
to consider various criteria for navigation, for example time of travel, velocities,
accelerations, and proximity to other pedestrians. We model these criteria in terms
of features

f : X 7→ R (16)

that map composite trajectories x ∈ X to real numbers f(x). In particular, we
propose to use the following features that model an intent to reach the target
positions energy efficiently, taking into account velocities and clearances when
avoiding obstacles and other agents.

Time The incentive of a group A of pedestrians to reach a certain target position
as fast as possible (Mombaur et al., 2010) is captured by the feature

fAtime(x) =
∑
a∈A

∫
t
1 dt. (17)

Acceleration Pedestrians typically aim to walk efficiently, avoiding unnecessary
accelerations (Hoogendoorn and Bovy, 2003; Mombaur et al., 2010). Integrating
the squared acceleration over the trajectory yields the feature

fAacceleration(x) =
∑
a∈A

∫
t
‖ẍa(t)‖2 dt. (18)

Velocity Pedestrians tend to walk at a certain velocity that is uncomfortable to
exceed (Helbing and Molnar, 1995). We therefore use the feature

fAvelocity(x) =
∑
a∈A

∫
t
‖ẋa(t)‖2 dt (19)

that integrates the squared velocity over the trajectories.
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Clearance to other agents Pedestrians tend to evade other pedestrians. We
assume that the evasive maneuvers depend on the distances between the agents,
yielding the feature

f
phys
distance(x) =

∑
a∈A

∑
b6=a

∫
t

1

‖xa(t)− xb(t)‖2
dt. (20)

Collision avoidance with respect to static obstacles Finally, pedestrians avoid
walls and other static obstacles, leading to the feature

fAobstacle(x) =
∑
a∈A

∫
t

1

‖xa(t)− oaclosest(t)‖2
dt, (21)

where oaclosest is the position of the closest obstacle to agent a at time t.

3.2.3 Computing Feature Expectations

As discussed in Section 3.1, learning the model parameters θ requires computing
the feature expectations Epθ(x)[f(x)] of the resulting probability distribution pθ(x).
In general, however, inference about distributions over continuous trajectories is
not analytically tractable. Monte Carlo sampling methods yet provide means to
approximate the expectations using a set of sample trajectories drawn from the
distribution. In particular, Markov chain Monte Carlo (MCMC) methods (Bishop,
2006) allow us to obtain samples from high-dimensional distributions. These
methods aim to explore the state space by constructing a Markov chain whose
equilibrium distribution is the target distribution.

Most notably, the widely-used Metropolis-Hastings algorithm (Hastings, 1970)
generates a Markov chain in the state space using a proposal distribution and a
criterion to accept or reject the proposed steps. This proposal distribution and the
resulting acceptance rate, however, have a dramatic effect on the mixing time of
the algorithm, e. g., the number of steps after which the distribution of the samples
can be considered to be close to the target distribution. In general, it is difficult to
design a proposal distribution that leads to satisfactory mixing. As a result, efficient
sampling from complex high-dimensional distributions is often not tractable in
practice.

Our approach exploits the structure of the distributions over composite tra-
jectories to enable efficient sampling. First, the navigation behavior of physical
agents shapes the trajectories according to certain properties such as smoothness
and goal-directed navigation, which are captured by the features. As a result, the
distributions over the composite trajectories of the same homotopy class are highly

13



peaked. Exploiting the gradient of the probability densities allows us to guide the
sampling process towards these regions of high probability. To this end, assuming
that the physical features are differentiable with respect to the parameterization of
the trajectories allows us to compute the gradient of the density pψ(x).

In particular, we use the Hybrid Monte Carlo algorithm (Duane et al., 1987),
which takes into account the gradient of the density to sample from the distri-
butions pψ(x). The algorithm considers an extended target density pψ(x,u) to
simulate a fictitious physical system, where u ∈ Rn are auxiliary momentum
variables. The method constructs a Markov chain by alternating Hamiltonian dy-
namical updates and updates of the auxiliary variables, utilizing the gradient of
the density pψ(x) with respect to x. After performing a number of these “frog
leaps”, Hybrid Monte Carlo relies on the Metropolis-Hastings algorithm to accept
the candidate samples x? and u? with probability

min
(

1,
p̃ψ(x?) exp(−1

2u
?Tu?)

p̃ψ(x(τ)) exp(−1
2u

τ Tuτ )

)
, (22)

where the normalizer Zp in the distribution pψ(x) = p̃ψ(x)/Zp vanishes.
In theory, the resulting Markov chain explores the entire state space X , and

therefore enables sampling from the distribution pθ(x). In practice, however,
the mixing time when sampling from the kind of distributions over composite
trajectories that we are considering can be obstructive. This follows from the
observation that the distributions over composite trajectories are highly peaked. The
regions of smooth, collision-free trajectories are surrounded by regions of very low
probability, for example where two agents get close to each other. Thus, in practice
the Markov chain is unlikely to cover the whole space of composite trajectories in
reasonable time. In the next section, Section 3.3, we will present a model of human
navigation behavior that naturally captures continuous as well as discrete navigation
decisions and that also allows efficient sampling for learning its parameters.

3.3 Modeling Discrete Navigation Decisions

In the previous section, we presented an approach to model continuous navigation
behavior in terms of features such as velocities, accelerations, and clearances when
passing obstacles and other agents. In addition to that, the decision-making process
of interacting agents that ultimately leads to the observed trajectories often also
comprises discrete decisions. The model we present in this section allows us to
model both, the discrete as well as the continuous navigation decisions. For instance
our model allows us to learn cultural preferences of passing on a specific side, or
how acceptable it is to split groups of people that belong together.
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(a) (b) (c)

Figure 2: Example of three homotopically distinct composite trajectories in the
same situation. (a vs. b): the blue agent passes the solid obstacle on opposite sides.
(b vs. c): the two agents pass each other on different sides.

In the following, we first review the concept of homotopic trajectories. We
then present a method to model the discrete and the continuous decision-making
process of interacting agents in terms of a mixture distribution. We introduce a set
of features to capture the discrete navigation decisions of the agents. Finally, we
compute the expected feature values of the discrete probability distribution, which
are needed for learning the model parameters.

3.3.1 Mixture Distribution

Figure 2 illustrates three distinct composite trajectories that capture the possible
interaction of two agents from the same initial situation. The composite trajectories
depicted in (a) and (b) differ in one of the agent’s decision to bypass the static
obstacle on different sides. In contrast to that, according to the trajectories depicted
in (b) and (c), the agents pass each other on distinct sides. We can capture these
different possible ways to bypass static obstacles and other agents with the concept
of homotopy. Two composite trajectories are homotopic if and only if they can
be continuously transformed into each other without any collisions. Hence, the
depicted trajectories (a), (b), and (c) are non-homotopic. Consequently, the agents’
discrete decisions of bypassing other agents and static obstacles on the left side
or on the right side partition the space X of composite trajectories into homotopy
classes ψ ∈ Ψ.

We model these discrete decisions using a probability distribution over the ho-
motopy classes of the composite trajectories. Specifically, as illustrated in Figure 3,
we use a mixture distribution that comprises a discrete probability distribution P (ψ)
over the homotopy classes ψ ∈ Ψ. For each of the homotopy classes ψ ∈ Ψ, the
mixture distribution models the agents’ continuous navigation decisions in terms
of a continuous probability distribution pψ(x), where x ∈ ψ, as discussed in Sec-
tion 3.2. We assume that the continuous navigation behavior is independent of
the homotopy classes, which means that the feature weights θ that give rise to the
continuous distributions pψ(x) are the same for all the homotopy classes ψ.
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Figure 3: Mixture distribution to model the agents’ discrete and continuous
navigation behavior. The mixture density function p(x) is given by a weighted
sum of probability density functions pψ(x) that capture the agents’ continuous
navigation decisions conditioned on the homotopy classes ψ ∈ Ψ. The weights
assign a probability P (ψ) to each homotopy class ψ of the space of composite
trajectories. The figure illustrates the high-dimensional space X of composite
trajectories in one dimension.

For learning the feature weights θ we need to compute feature expectations with
respect to the distribution pψ(x) of a given homotopy class ψ only, as opposed to the
space of all composite trajectories. This enables Hybrid Monte Carlo to efficiently
explore the space without the need to traversing regions of low probability that
separate the homotopy classes. In practice, we initialize a Markov chain for each
considered homotopy class at its most likely composite trajectory, which we can
compute efficiently using gradient-based optimization.

To learn the discrete navigation behavior from demonstrations, our goal is to
find the probability distribution P (ψ) that induces the agents’ discrete decisions in
terms of features

fhom : Ψ 7→ R (23)

of the homotopy classes. Hence, we want

EP [fhom] = fhom
D =

∑
x∈D

fhom(ψx)

|D|
, (24)
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where fhom
D is the empirical feature value of the observed trajectories D, and ψx is

the homotopy class of x. According to the principle of maximum entropy, which we
discussed in Section 3.1, the distribution that best describes the observed behavior
without implying any further assumptions is given by

Pθhom(ψ) =
1

Z(θhom)
exp(−θhomT fhom(ψ)), (25)

where Z(θhom) is a normalization factor. Likewise, we can apply gradient-based op-
timization to compute the feature weights θhom based on the observed trajectoriesD.
According to the mixture distribution p(x), the navigation behavior is captured by
the probability distribution over the composite trajectories given by

p(x) = P (ψx)pψx(x). (26)

As illustrated in Figure 3, the resulting generative model allows us to sample
composite trajectories from the mixture distribution given in Equation (26) by
means of ancestral sampling (Bishop, 2006).

3.3.2 Features

To represent important properties of natural navigation behavior in terms of homo-
topy classes, we use feature fhom(ψ), that map homotopy classes ψ to real values.
To capture the sides on which each pair of agents passes each other, we compute
the rotation of the vector xb(t) − xa(t) for a pair of agents a and b along their
trajectories, which we denote as ωba. For example, two agents that pass each other
on the right yield a positive ωba, in contrast to a negative value for passing on the left.
It is important to note that ωba is an invariant for all composite trajectories of one
homotopy class with fixed start- and goal positions. We describe the computation
of ωba in more detail in Section 4.2.1. In the following, we present the features we
utilize to describe relevant properties of natural decision making during navigation.

Passing left vs. passing right To capture the decisions to avoid other agents on
the left or on the right, we consider the feature

fhom
lr (ψ) =

∑
a∈A

∑
b 6=a

ωba. (27)

Group Behavior Similarly, in case we are able to recognize group memberships
of agents, the following feature indicates if an agent moves through such a group.
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start goal start goal

A B C D

Figure 4: Overview of the proposed method to compute static homotopy classes.
(A) Voronoi diagram (red) of an office environment. (B) We add Voronoi cells
around the start and the goal location for a robust connection to the diagram. (C)
Graph representation of the Voronoi diagram with connected vertices for start and
goal location. Each path in this graph corresponds to a homotopically distinct path
from start to goal. (D) Trajectories generated from the three shortest paths.

An agent that passes two members of a group on different sides moves through the
corresponding group. Therefore, we have

fhom
group(ψ) =

∑
a∈A
|{G ∈ G | ∃b, c ∈ G : b, c 6= a ∧ ωbaω

c
a < 0}|,

where G is the set of groups of agents, which allows our approach to learn to which
extent the agents avoid to move through groups.

Most likely composite trajectory Furthermore, we allow the features fhom : Ψ 7→
R to depend on the distribution over composite trajectories of the corresponding
homotopy class. For example, the feature

fhom
ml cost(ψ) = min

x∈ψ
θT f(x) (28)

captures the cost of the most likely composite trajectory x of homotopy class ψ,
which allows the model to reason about the homotopy class the agents choose in
terms of the cost of the composite trajectory that is most likely according to the
learned distribution pψ(x). Based on the results of our previous experiments (Kud-
erer et al., 2012), we assume that we can compute the most likely composite
trajectory using gradient-based optimization techniques.

3.3.3 Computing Feature Expectations

Learning the model parameters θhom to capture the agents’ discrete navigation
decisions requires computing the expected feature values

EP (ψ)[f
hom] =

∑
ψ∈Ψ

P (ψ)fhom(ψ) (29)
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with respect to the discrete probability distribution P (ψ). However, summing over
the entire space Ψ of homotopy classes can be computationally prohibitory since
the number of homotopy classes scales exponentially with the number of agents and
static obstacles.

Fortunately, in most situations, only a few homotopy classes constitute the
majority of the probability mass of the distribution P (ψ). For example, homotopy
classes that entail a long detour around obstacles might be highly unlikely and
for this reason have only limited effect on the feature expectations. We therefore
propose to approximate the expected feature values EP (ψ)[f

hom] based on a subset Ψ′

of the homotopy classes ψ ∈ Ψ.
Evaluating the feature values fhom(ψ) of a given homotopy class ψ requires

computing a composite trajectory x ∈ ψ of that homotopy class ψ. In the following,
we present a method to efficiently compute a set of homotopically distinct composite
trajectories that are likely to constitute the majority of the probability.

In particular, to compute an initial guess for the distinct homotopy classes that
arise from static obstacles, we utilize the concept of Voronoi diagrams. In general,
the Voronoi diagram is defined as the set of points in free space to which the two
closest obstacles have the same distance (Choset and Burdick, 2000). We compute
a discretized form on an obstacle grid map bounded by occupied cells and represent
it as a binary grid map VD in which a cell

(x, y) ∈ N2 (30)

either belongs to the Voronoi diagram or not, giving

VD(x, y) ∈ {true, false}. (31)

Figure 4 (A) shows such a discretized Voronoi diagram over the obstacle map and
depicts the cells for which VD(x, y)= true in red. We also add dummy obstacles
at the start and the goal position of the agents such that these positions become
effectively enclosed by “bubbles” which are obstacle free by construction of the
Voronoi diagram. This provides a robust way to connect these positions to the
Voronoi diagram, see Figure 4 (B) vs. (A).

Based on this discretized representation of the Voronoi diagram, we build a
graph that effectively captures the connectivity of the free space. In particular,
each vertex in the graph corresponds to a “branching point” in the original Voronoi
diagram, as illustrated in Figure 4 (C). In addition, we add vertices for the start and
goal positions and connect them to the graph. Finally, we need to remove the edges
that were introduced by the dummy obstacles, as illustrated by scissor symbols
in Figure 4 (C). This process ensures that each simple path in the graph corresponds
to one unique homotopy class. The resulting abstract graph substantially reduces the
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number of states compared to the original grid map representation of the Voronoi
diagram, as shown in Figure 4 (C). Finally, we set the weights of the edges according
to the length of the lines in the Voronoi diagram.

The graph grows linearly with the number of obstacles in the environment (Au-
renhammer, 1991). This follows from viewing the Voronoi graph as a planar graph
where the number of faces l corresponds to the number of obstacles. Since each
vertex in the Voronoi graph has a minimum degree of three, the sum over the de-
grees of all vertices

∑
v∈V deg(v) is at least three times the number of vertices |V |.

Furthermore, any undirected graph satisfies∑
v∈V

deg(v) = 2|E|. (32)

Hence, we have
2|E| ≥ 3|V |. (33)

Combining this with the Euler relation for planar graphs given by

|V | − |E|+ l = 2 (34)

leads to

|E| ≤ 3l (35)

and

|V | ≤ 2l. (36)

As a result, the number of edges and vertices is linear in the number of obstacles.
In the abstract graph, different paths correspond to different homotopy classes

in the environment. Therefore, searching for the k best homotopically different
simple paths in this graph is equivalent to searching for the k best simple paths.
According to Katoh et al. (1982), the best known algorithm for this problem has a
runtime complexity in

O(k(|E|+ |V | log |V |)), (37)

which follows from the complexity of

O(|E|+ |V | log |V |) (38)

of Dijkstra’s algorithm (Dijkstra, 1959). As the number of vertices and edges
in our graph depends linearly on the number o of obstacles, it follows that our
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algorithms to extract the k best homotopically different simple paths for one agent
has a complexity

O(k(o log o)). (39)

See Kuderer et al. (2014) for further details on the construction of homotopically
distinct navigation paths.

Figure 4 (C) shows the three best paths from the start to the goal position for
one agent in the abstract graph. Figure 4 (D) shows the corresponding three best
paths in the Voronoi diagram. We conduct these computations for each agent and
convert the resulting paths to the spline-based trajectory representation. Thus, we
can generate composite trajectories that are homotopically distinct. In practice, we
only consider the homotopy classes that correspond to the k shortest trajectories for
each agent.

So far, we computed a set of homotopic distinct composite trajectories result
from static obstacles. In the following, we show how to include also homotopy
classes that result from the interaction of agents. We propose to consider different
outcomes of an interaction between two agents only when agents are likely to
interact in the first place, i.e., when they are close to each other at some point along
their trajectories. In this way, interactions between agents that are highly unlikely
are ignored.

For each composite trajectory xinit, our algorithm identifies a potential evasive
maneuver when two agents a and b come close to each other at some point along xinit.
For such a potential evasive maneuver, we want to reason about both possible
outcomes, i.e., passing left or passing right. To this end, we compute a composite
trajectory of x′ in which the agents a and b pass on the other side compared to the
original composite trajectory. Our algorithm repeatedly looks for such potential
evasive maneuvers as described above until there are no unresolved collisions.

4 Socially Compliant Robot Navigation

A socially compliant robot that navigates in an environment populated by humans
has to reason about future paths the humans are likely to take. The humans, however,
will react to the actions of the robot themselves, which is why the robot has to adopt
its behavior, which in turn will affect the humans. To break up this infinite loop, our
approach jointly reasons about the trajectories that are likely to be followed by all the
agents, including the robot itself. To do so, the robot incorporates the current poses
of the humans and itself into the prediction process and implicitly “predicts” its
own trajectory, which it then follows. The robot uses the learned policy to maintain
a set of possible interactions from which it can select the trajectory that fits the
current situation best. In this section, we integrate the model of natural pedestrian
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behavior, which we described in Section 3, into a consistent framework for mobile
robot navigation. In particular, we present how we use learned behavior models
for robot navigation and give details on how to maintain a set of homotopically
different composite trajectories for the robot and nearby pedestrians. In addition,
this section presents how to infer the goals of pedestrians and how we cope with
online planning in larger environments.

4.1 Mobile Robot Navigation Using the Learned Behavior Model

The framework presented in Section 3 predicts the actions of the pedestrians in the
vicinity of the robot in terms of a joint probability distribution over the composite
trajectories of the robot and the pedestrians, taking into account the environment
of the robot. In this work, we predict the future behavior of the pedestrians based
on the current positions and velocities of the pedestrians. Taking into account the
parts of the pedestrians’ trajectories that the robot has observed so far, similar to
Ziebart et al. (2009), may further improve the predictions. In this section, we will
discuss how the robot can exploit this probability distribution to plan paths through
populated environments.

A possible way to use the learned model for mobile robot navigation is to have
the robot behave according to a composite trajectory sampled from this probability
distribution. In this way, the robot imitates the learned behavior, including the
observed stochasticity of the trajectories. Using ancestral sampling, the robot first
samples a homotopy class ψ from P (ψ). The robot subsequently samples a compos-
ite trajectory x from the corresponding continuous probability distribution pψ(x).
Such a sample drawn from the joint probability distribution predicts the trajectories
of nearby pedestrians. During navigation, we need to constantly update this predic-
tion with the current situation, which means that we need to repeatedly sample new
composite trajectories. However, sampling from the high-dimensional distributions
is not feasible online during navigation.

In our experiments, we found a different way to integrate the learned model
into the navigation framework to perform best. The robot executes at each time
step its planned trajectory, which is captured in the most likely composite trajectory
from the most likely homotopy class. In practice, we can efficiently optimize the
parameters of an initial composite trajectory x with respect to its probability density

pψx(x) ∝ exp(−θT f(x)), (40)

using gradient-based optimization techniques. To this end, we compute the deriva-
tive of the feature vector f(x) with respect to the spline control points of x using
a series of analytical and numerical differentiations. We found the optimization
algorithm RPROP (Riedmiller and Braun, 1993) to perform best at optimizing the
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control points of composite trajectories. Previous experiments (Kuderer et al., 2012)
suggest that gradient-based optimization indeed leads to the most likely state of the
homotopy class ψ(x). In this way, we compute the most likely trajectory in each
relevant homotopy class. Thereby, we can compute the most likely homotopy class
according to the discrete distribution

P (ψ) ∝ exp(−θhomT fhom(ψ)). (41)

4.2 Maintaining a Set of Non-Homotopic Composite Trajectories

The convergence time of optimization-based techniques typically decreases when the
initial guess is already close to the optimum. Thus, during navigation, it is desirable
to re-use previously optimized trajectories. In particular, from one planning cycle
to the next the current position of the robot as well as the environment do not
change substantially in most situations. Therefore, we propose to maintain a set T
of optimized, homotopically different trajectories during navigation.

However, whenever a new homotopy class emerges due to changes in the
environment, we need to add the corresponding trajectory to the set T . When an
obstacle vanishes, two homotopy classes merge. As a consequence, T contains two
homotopic composite trajectories, and we can discard one of them. In the following,
we will describe how to uniquely identify the homotopy class of a given composite
trajectory, which is needed for inserting trajectories corresponding to new homotopy
classes as well as for discarding homotopic duplicates during navigation.

4.2.1 Identifying Homotopy Classes

As Vernaza et al. (2012) point out, the homotopy class of a trajectory can be
represented as the vector of winding angles around the regions of interest, i.e., the
obstacles in the environment. As illustrated in Figure 5, the winding angle ωba(x) of
a composite trajectory x is defined as the sum of infinitesimal angle differences ∆ω
of the trajectory of an agent a to a representative point b along the trajectory.

In the case of static obstacles, we take an arbitrary point inside an obstacle b as
the representative point to compute the winding angle. We consider the trajectory
at discrete time steps and sum up the angle differences ∆ω. The step size of this
discretization does not change the computed winding angle as long as it still captures
the “winding direction”. We exploit this by adapting the step size dynamically as
we walk along the trajectory to efficiently compute the winding angles.

In the case of pairs of agents, we apply the same approach. In contrast to static
obstacles, however, the representative point moves along the trajectory of the second
agent. In this case, we effectively compute the rotation of the vector xb(t)− xa(t)
for a pair of agents a and b.
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Figure 5: Computation of the winding angles with respect to obstacles. The figure
shows three trajectories τ1, τ2 and τ3 that bypass the obstacle b. The infinitesimal
angles ∆ω sum up to the winding angle ωi around the representative point of the
obstacle. The two paths on the right yield the same winding angle ωi(τ2) = ωi(τ3)
in contrast to the path on the left.

Most importantly, composite trajectories that are homotopy equivalent yield
the same winding angles for all obstacles and for all pairs of agents. Therefore,
computing ωba for all agents a and for all other agents and obstacles b yields a
fingerprint

F (x) = 〈. . . , ωbiai(x), . . .〉ai 6=bi (42)

that allows us to describe and recognize the homotopy classes of composite trajecto-
ries. Note that we need to compute the angles each time the environment changes,
since homotopy classes can emerge or vanish.

4.3 Inferring Target Positions

When using our model to predict the trajectories of the agents in new situations, the
target positions of the agents might be unknown. Following (Ziebart et al., 2008),
applying Bayes’ theorem allows our model to reason about their target positions.
After having observed the agents traveling from the composite positions A to B
along the composite trajectory xA→B , the probability that the agents proceed to
composite target C is given by

Pθ(C | xA→B) ∝ p
θ
(xA→B | C)Pθ(C)

∝
exp(−θT f(xA→B))

∫
x∈XB→C

exp(−θT f(x))dx∫
x∈XA→C

exp(−θT f(x))dx
Pθ(C), (43)

where XA→C and XB→C refer to the set of all composite trajectories that lead the
agents from A to C, and from B to C, respectively.
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4.4 Path Planning in Large Environments

The time to compute the probability distribution over composite trajectories in a
certain situation scales linearly with the travel time of the agents. Furthermore, the
uncertainties in predicting cooperative behavior grow with the prediction horizon.
Therefore, we employ our learned policy to represent the immediate, joint behavior
of all the agents in the near future and represent more distant behavior by globally
planned paths independently for each agent. This also enables socially compliant
robot navigation in large environments.

Specifically, at time t0, we evaluate the learned policy in the time interval
[t0, t0 + tp] and represent the behavior in the time interval (t0 + tp, tend] by a
globally planned trajectory for each agent. More specifically, for a pedestrian a
that is detected by the robot for the first time, we estimate its target position and
generate an initial trajectory xaglobal using A∗ search. The cost function for global
path planning accounts for the time to reach the target and the distance to obstacles,
which is a subset of the features used for the learned policy. Based on this global
path, we set intermediate target positions given by xaglobal(t0 + tp) and use the
learned policy to compute a probability distribution of the composite trajectory of
all agents from their current positions to these intermediate target positions.

In each planning cycle, the robot updates the intermediate targets along this
global path and executes the trajectory that corresponds to the most likely composite
trajectory. Our current implementation allows the robot to replan at a frequency of
5 Hz, which enables the robot to quickly adapt its plan to changes in the environment.
In our experiments, we typically set the planning horizon to tp = 10 s, which seems
to enable natural predictive planning in most situations.

5 Experimental Evaluation

In this section, we present a thorough experimental evaluation of our approach. In
Section 5.1, we evaluate the performance of our method to predict the trajectories
of pedestrians based on a model that is learned using observed trajectories of the
pedestrians. In Section 5.2, we present experiments of a mobile robot that uses our
pedestrian model to navigate in populated environments.

5.1 Learning Pedestrian Navigation Behavior

We applied our approach to the problem of learning a model of pedestrian behavior.
We considered two datasets of trajectories of interacting pedestrians. The first
dataset, depicted in Figure 6, comprises one hour of interactions of four persons
that we recorded using a motion capture system, leading to 81 individual composite
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Figure 6: Trajectories observed during one hour of interactions of four persons in
our test environment. The depicted area has a size of approximately 11 m × 8 m.

trajectories. To distract the persons from the navigation task, we made them read
and memorize newspaper articles at different locations that were consecutively num-
bered. At a signal, they simultaneously walked to the subsequent positions, which
repeatedly gave rise to situations where the participants had to evade each other.
The second dataset (Pellegrini et al., 2009) comprises 12 minutes of trajectories of
pedestrians interacting in a hotel entrance, leading to 71 composite trajectories with
three to five pedestrians each.

5.1.1 Cross Validation

We conducted a five-fold cross validation on the aforementioned datasets to evaluate
how well the models learned by our approach generalize to new situations. We
compared our approach to the approach of Kuderer et al. (2012), the social forces al-
gorithm by Helbing and Molnar (1995), and the reciprocal velocity obstacles (RVO)
introduced by van den Berg et al. (2009). Figure 9 shows example trajectories
of the different methods. We evaluated the evolution of the discrepancy between
the feature expectations and the empirical feature values on the training sets while
learning the model parameters of our approach. Figure 7 shows that our method is

26



0 10 20 30 40 50 60
0

20

40

iteration

|f̃
ph

ys
−
E

p
[f

ph
ys
]|

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

iteration

|f̃
ho

m
−

E
p
[f

ho
m
]|

Figure 7: Evolution of the norm and variance over the five folds of the discrepancy
between the feature expectations of the model and the empirical feature values
while learning pedestrian navigation behavior. Top: Learning the physical properties
of the trajectories. Bottom: Learning the discrete decisions that determine the
homotopy classes of the composite trajectories. The gradient-based optimization
method RPROP does not force a monotonic decrease in the value of the objective
function, hence the bumps in the graph.

able to replicate the observed behavior in terms of the features. To allow for a fair
comparison, we used the same set of features for all the methods. To optimize the
parameters of the social forces method and RVO, we minimized the norm of the
discrepancy between the feature values as induced by the methods and the empirical
feature values using stochastic gradient descend. We additionally evaluated the
parameters provided by Helbing and Molnar (1995) and Guy et al. (2012), which
turned out to not perform better than the learned parameters. For all methods, we
assumed that the target positions of the agents were the positions last observed in the
datasets. The results of the cross validation, depicted in Figure 8, suggest that our
method is able to capture human behavior more accurately than the other methods
in terms of features and in terms of the prediction error in Euclidean distances. Note
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(a) Dataset by Pellegrini et al. (b) Motion capture dataset

Figure 8: Cross validation. The results suggest that our approach better captures
pedestrian navigation behavior in terms of the features (top) and the prediction
error in meters (bottom) compared to the approach of Kuderer et al. (2012), the
social forces method (Helbing and Molnar, 1995), and reciprocal velocity obsta-
cles (van den Berg et al., 2009). Left: Results on the dataset provided by Pellegrini
et al. (2009). Right: Results on the dataset recorded using our motion capture
system.

Humans Our method Kuderer et al. RVO Social forces

Figure 9: Trajectories of four pedestrians predicted by four different methods in the
same situation. Humans: Observed trajectories recorded in the test environment
shown in Figure 6. Our method: Samples drawn from the policy learned by our
method replicate the stochasticity of the observed trajectories. Kuderer et al. (2012):
The Dirac approximation favors samples from highly unlikely homotopy classes.
RVO and social forces: Deterministic predictions.

that the comparison in terms of feature differences favors our particular method,
since the other techniques do not explicitly optimize this value. The Euclidean
distance metric, however, serves as a fair comparison.
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5.1.2 Turing Test

A robot that navigates in a socially compliant way is required to plan trajectories in
a human-like way. Our method is also applicable to create human-like navigation
behavior for example to simulate agents in the context of computer graphics. Here,
it is crucial that the generated trajectories are perceived as human-like. We carried
out a Turing test to evaluate how human-like the behavior generated by our approach
compares to other methods. We asked ten human subjects to distinguish recorded
human behavior from behavior generated by one of the algorithms. We evaluated
how well the subjects performed on a set of runs that was randomly drawn from
recorded human demonstrations. We showed them animations of trajectories that
were either recorded from the human demonstrations or from the prediction of one
of the algorithms. In particular, we presented 40 runs to each of the human subjects,
where the trajectories were equally drawn from the human demonstrations, from
the predictions computed by our approach, by the approach of Kuderer et al. (2012),
and Helbing and Molnar (1995). Figure 10 summarizes the results. The human
subjects correctly identified 79 % of all the human demonstrations, but they mistook
68 % of the predictions of our approach, 40 % of the predictions of the approach of
Kuderer et al. (2012), and 35 % of the predictions of the social forces algorithm for
human behavior. The results of this Turing test indicate that the behavior induced
by our approach is perceived to be significantly more human-like than the behavior
induced by the other two methods according to a one-sided paired sample t-test at a
95% confidence level, where the measure is the percentage of the human subjects
who perceived a particular trajectory as human-like.

5.2 Socially Compliant Mobile Robot Navigation

The goal of this section is to demonstrate that our approach allows a mobile robot
to autonomously navigate in a socially compliant way. We conducted experiments
where an autonomous robotic wheelchair interacted with real humans. The robot was
equipped with laser range finders to perceive the environment including pedestrians.
We localize the robot in a static map using laser-based Monte Carlo Localization
(Thrun et al., 2000). To estimate the position and velocity of nearby pedestrians, we
extract objects in the laser image that show typical characteristics of pedestrians. We
then assign these observations to existing tracks of pedestrians, or add a new track
if the observation cannot be assigned to any of the existing tracks. To prevent false
positive detections, we disregard all laser observations in occupied space according
to the static map. Our implementation allows the robot to observe its environment
during tele-operation as well as during autonomous navigation only relying on
on-board sensors. In our experiments, we assumed known target positions of the
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Figure 10: Turing test to evaluate whether the behaviors induced by our new
approach, the approach of Kuderer et al. (2012), and the social forces model by
Helbing and Molnar (1995) qualify as human. The results suggest that the behavior
induced by our approach most resembles human behavior.

pedestrians.

5.2.1 Robot Navigation in the Presence of Static Obstacles

In a first experiment, the robotic wheelchair controlled by our method navigates
through a static environment. Figure 11 visualizes the belief of the robot during the
navigation task, i.e., the most likely trajectories for each homotopy class according
to the learned policy. The most likely trajectory that is selected for navigation is
shown in thick red in four images that correspond to consecutive time steps. The first
image shows the trajectory from the start position of the robot to its target position
in the static map of the environment. In the second image, after having traveled
around the corner, the robot perceives a static obstacle in the middle of the corridor,
which is not part of the static map. As a result of that, the robot starts reasoning
about the resulting homotopy classes, i.e., trajectories that pass this obstacle on the
top (left side) and about trajectories that pass this obstacle on the bottom (right side).
The robot prefers to pass the obstacle on the bottom since this trajectory has higher
likelihood according to the learned policy. The third and the fourth figure show the
robot pursuing the selected trajectory moving to the target position. The gray lines
show for each time step the trajectory driven by the robot so far.
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Figure 11: A robot controlled by our method navigates from its current position to
its target position and avoids a static obstacle in the process. The red dot illustrates
the robot’s position at four individual time steps, and the gray line visualizes the
trajectory that the robot has already driven. When the robot detects the static
obstacle, it computes both possible homotopy classes and behaves according to the
most likely trajectory, which is depicted as a thick red line.

5.2.2 Robot Navigation in the Presence of Static Obstacles and Humans

Figure 12 visualizes a second experiment, where the robot navigates through the
same environment. In the third image, however, the robot suddenly encounters
a pedestrian moving in the opposite direction. Assuming cooperative behavior,
the robot starts reasoning about composite trajectories comprising itself and the
pedestrian. In other words, the robot jointly reasons about its own trajectory and
the trajectory of the pedestrian. As can be seen in the third and fourth image, the
robot concludes that the pedestrian most likely passes the static obstacle on the top,
since this joint behavior has the highest likelihood according to the learned policy.
As a result, the robot chooses to pursue its original plan and passes the obstacle on
the bottom. In the fourth image the robot has lost track of the pedestrian since it
was occluded by the static obstacle. The gray line corresponds to the pedestrian’s
trajectory according to the perception of the robot.

Figure 13 visualizes a third experiment in the same environment. The robot
also encounters the static obstacle and a pedestrian that moves in the opposite
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Figure 12: A robot controlled by our method avoids a static obstacle and a pedestrian.
As soon as the robot detects the pedestrian, it computes the possible joint behavior
of the pedestrian (blue) and the robot (red). The robot predicts for the pedestrian to
evade the obstacle on the right. The pedestrian behaves according to the prediction
of the robot and thus the robot proceeds to follow its plan.

direction. In the second image, the robot assigns highest likelihood to the homotopy
class in which the pedestrian passes the obstacle on the top, similar to the previous
experiment. However, in this experiment the pedestrian insists on passing the static
obstacle on the bottom, which does not match the robot’s prediction, as illustrated
in the third figure. Since the robot constantly updates the probability distribution to
the current state of the environment, it is able to adapt the prediction of the joint
behavior. As a consequence, the robot changes its plan, decides to give way to the
pedestrian and passes the obstacle on the top.

5.2.3 Cooperative Navigation in an Office Environment

We furthermore evaluated the ability of our approach to cooperatively navigate in an
office environment in the presence of humans. The autonomous robotic wheelchair
passes two pedestrians in a hallway. Figure 14 depicts the composite trajectory that
the robotic wheelchair predicted to be most likely at four different timesteps during
the encounter. First, the pedestrians walk side by side, blocking the corridor. In
contrast, our method expects the humans to cooperatively engage in joint collision
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Figure 13: Example interaction of the robot (red) with a pedestrian (blue) in the
presence of a static obstacle in the corridor. In the top left image, the robot predicts
for the pedestrian to evade above the obstacle (thick blue line). However, the
pedestrian insists on passing on the other side. Thus, the robot reevaluates the
situation, as illustrated in the lower right image.

Table 1: Comparison of our approach to an A∗ planner.
algorithm min dist avg velocity % blocked

our approach 0.34 0.56 0
A∗, rmin = 0.2 0.16 0.49 1
A∗ , rmin = 0.8 0.38 0.27 60

avoidance. During the encounter, the robot repeatedly computes the most likely
cooperative interaction with the pedestrians, which allows the wheelchair to engage
in natural joint collision avoidance. A traditional path planner would not be able to
find a path to the target position in such a situation, since there is no valid path if
the humans are considered as static obstacles, as suggested in the following set of
experiments.
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Figure 14: Autonomous mobile robot navigation in a realistic scenario in which a
robotic wheelchair passes two pedestrians in a hallway using the approach presented
in this paper. The bottom images depict the driven trajectories (gray) and the
interaction of the robot (red) with the pedestrians (blue) that is considered to be
most likely by the robot at different time steps. At first, the pedestrians block the
hallway such that a traditional path planning algorithm would be unable to find
a path to the target position. In contrast, our method expects the pedestrians to
cooperatively engage in joint collision avoidance with the wheelchair, and therefore
is able to find a path to the target position. Left: The robot assigns highest probability
to evading on the right before the pedestrians begin to evade to either side. Middle
left and middle right: The robotic wheelchair and the pedestrians evade each other
in a natural manner. Right: After the situation has been resolved, the wheelchair
proceeds to its target position.
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Figure 15: The angle αdev used in the feature modeling preferred user direction.

5.2.4 Comparison to Traditional Path Planning

To compare the performance of our method with the performance of a global path
planning algorithm that is designed for dynamic environments, we furthermore
conducted a set of experiments in simulation. We therefore implemented an A∗ plan-
ner in configuration-time space that predicts the motion of the pedestrians with a
constant velocity model. We set the maximum velocity to 0.5 m

s , which is similar
to the velocity learned by the policy used for our approach. To acquire realistic
test data, we used the abovementioned laser-based people tracker to record natural
evasive movements of two pedestrians that evaded a third person in a hallway. To
allow for a fair comparison, we fixed the trajectories of the two pedestrians and
let the method proposed in this paper and the A∗ planner control the third person,
respectively.

Tab. 1 summarizes the results of the two methods averaged over 10 different
scenarios. The results suggest that our method learned a policy that safely evaded
the other pedestrians at a minimum clearance of 0.34 m and reached its target at
an average velocity of 0.5 m

s . In contrast, it turned out that it is difficult to tune
the A∗-planner to obtain satisfactory results. Setting the minimal planned distance
between the robot and dynamic obstacles to a low value such as 0.2 m, the planner
did not sufficiently evade the pedestrians. To achieve an acceptable clearance, the
minimal planned distance to dynamic obstacles needed to be set to 0.8 m since the
pedestrians do not always comply with the constant velocity assumption. However,
a value this large prevents the A∗-planner from finding a path to the target in many
situations. In our experiments, the A∗-planner failed and needed to stop the robot
in 60 % of the time steps, resulting in a rather low average velocity of 0.27 m

s .
This problem is referred to as the “freezing robot problem” (Trautman and Krause,
2010). Our experiment demonstrates the shortcomings of A∗-like path planners
when navigating in the presence of humans. The approach presented in this paper is
able to predict cooperative behavior of nearby pedestrians and is therefore able to
navigate a robot efficiently and in a socially compliant way.
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Figure 16: Shared autonomy control of a wheelchair in a corridor with two static
obstacles. The figure shows the best trajectory according to the cost function, which
the wheelchair executes (red) and an additional set of optimized trajectories in
different homotopy classes (blue, dashed). The joystick in the lower right indicates
the current direction preference of the user.

5.2.5 Shared Autonomy Navigation

Our method enables shared autonomy navigation, i.e., navigation in which a user
and the system both contribute to the resulting navigation behavior. To this end,
our technique maintains a set of trajectories each of which is locally optimized
with respect to a user-defined cost function. We use features that incorporate user
preferences online during navigation. The robot follows the trajectory that has
lowest cost according to a tradeoff between these user preferences and the parts
of the cost function that penalize properties such as high velocities or closeness to
obstacles. The feature weights determine how strongly the robot follows the user
preferences.

Let us assume a wheelchair scenario in which the handicapped user is only
capable of issuing high-level commands rather than low-level controls. For example,
such a user might want to express navigation preferences by joystick deflection,
by head posture (Mandel and Frese, 2007) or even through brain-machine inter-
faces (Carlson and Milln, 2013). To achieve this with our approach, we introduce a
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feature fdir that penalizes the deviation αdev of a trajectory from the preferred user
direction:

fdir(τ) = α2
dev = arccos2 d(τ) · ddesired

‖d(τ)‖‖ddesired‖
, (44)

where d(τ) is the direction of the trajectory and ddesired is the direction selected
by the user, as illustrated in Figure 15. To compute d(τ) we use the location of
trajectory τ at the time ∆t in the future, i.e., d(τ) = τ(t0 + ∆t)− τ(t0). Note that
we use this feature only for evaluating the costs of the optimized trajectories in the
selection process, not for the optimization itself.

We conducted an experiment, in which we applied this method to shared auton-
omy control of our robotic wheelchair. We allowed the user to bias the system by
adding fdir to the cost function, which reflects the deviation of the joystick from the
planned trajectory. Figure 16 shows how the wheelchair navigated the corridor in
which we placed additional static obstacles: (A) Our system has computed a set of
optimized trajectories in different homotopy classes; (B) Without user preferences,
the system selects and follows the green trajectory since it has lowest costs; (C) The
wheelchair discarded one of the trajectory alternatives that require turning around
since its costs have exceeded a threshold; (D) In front of the second obstacle, the
user turns the joystick to the left, which biases the costs of each trajectory, and the
wheelchair selects the left trajectory; (E) The wheelchair follows the left trajectory
since it now has the lowest costs.

6 Conclusion

We presented a novel approach that allows a mobile robot to learn a model of the
navigation behavior of cooperatively navigating agents such as pedestrians. Based
on observations of their continuous trajectories, our method infers a model of the
underlying decision-making process. To cope with the discrete and continuous
aspects of this process, our model uses a joint mixture distribution that captures the
discrete decisions regarding the homotopy classes of the composite trajectories as
well as continuous properties of the trajectories such as higher-order dynamics. To
compute the feature expectations with respect to the continuous, high-dimensional
probability distributions, our method uses Hamiltonian Markov chain Monte Carlo
sampling. To efficiently explore the space of trajectories, we use a Voronoi graph
of the environment. The learned model enables socially compliant mobile robot
navigation since it allows the robot to predict the navigation behavior of pedestrians
in terms of a probability distribution over their trajectories. A Turing test suggests
that the pedestrian trajectories induced by our approach appear highly human-like.
Furthermore, a cross validation demonstrates that our method generalizes to new
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situations and outperforms three state-of-the-art techniques. A set of experiments
with a real robot illustrates the applicability of our approach to socially compliant
mobile robot navigation.
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