
Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses

Peter R. Wurman,∗ Raffaello D’Andrea† & Mick Mountz
Kiva Systems
Woburn, MA

{pwurman,rdandrea,mmountz}@kivasystems.com

Abstract

The Kiva warehouse management system creates a new
paradigm for pick-pack-and-ship warehouses that signifi-
cantly improves worker productivity. The Kiva system uses
movable storage shelves that can be lifted by small, au-
tonomous robots. By bringing the product to the worker, pro-
ductivity is increased by a factor of two or more, while simul-
taneously improving accountability and flexibility. A Kiva
installation for a large distribution center may require 500 or
more vehicles. As such, the Kiva system represents the first
commercially available, large-scale autonomous robot sys-
tem. The first permanent installation of a Kiva system was
deployed in the summer of 2006.

Introduction
Occasionally, mature industries are turned upside down by
innovations. The years of research on robotics and multi-
agent systems are coming together to provide just such a dis-
ruption to the material handling industry. While autonomous
guided vehicles (AGVs) have been used to move material
within warehouses since the 1950’s, they have been used
primarily to transport very large, very heavy objects like
rolls of uncut paper or engine blocks. The confluence of in-
expensive wireless communications, computational power,
and robotic components are making autonomous vehicles
cheaper, smaller and more capable.

In recent years, we have seen an increase in the use of
autonomous vehicles in the field. Examples include tele-
operated military devices like iRobot’s Packbot and the pi-
lotless Predator aircraft, both of which have seen service in
Iraq and Afghanistan. The Mars rovers, Spirit and Opportu-
nity, exemplify the use of autonomous robots in scientific
exploration. Closer to home, the Aerosonde autonomous
aircraft has been used to plumb weather systems, and re-
cently flew in tropical storms that are unsafe for piloted air-
craft. Commercially, autonomous vehicles are just hitting

∗The first author is also an Associate Professor in the Computer
Science Department at North Carolina State University.

†The second author is also an Associate Professor in the Sib-
ley School of Mechanical and Aerospace Engineering at Cornell
University.
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the market. ActivMedia’s PatrolBot is a mobile monitor-
ing system for buildings, and Aethon’s Tug maneuvers sup-
ply carts around hospitals. Robots have even penetrated the
home in an attempt to relieve homeowners of their most tire-
some chores. iRobot sells the Roomba autonomous vacuum
and the Scooba floor washer, and Friendly Robotics, among
others, markets robotic lawn mowers.

Many more research projects are underway to build robots
for search and rescue, mine exploration, land mine removal,
and a wide variety of other intriguing tasks.

Recent advances in software engineering have laid the
foundation for building large, complex systems of au-
tonomous vehicles. In particular, the multi-agent program-
ming paradigm has been shown to be an effective way to
build and control complex systems (Jennings & Bussmann
2003). A great deal of research has focused on autonomous
agents and multi-agent systems, with the expectation that,
in the future, environments will be populated with hun-
dreds or thousands of autonomous agents. In this paper, we
will use the term multi-agent system (MAS) to refer to the
general class of systems in which autonomous agents carry
out actions and communicate with each other via messages,
and the term multi-vehicle system (MVS) to refer to multi-
agent systems with autonomous, robotic vehicles. Although
systems with as many as 100 robots have been demon-
strated, like the experimental CentiBot project (Konolige et
al. 2004), the applications—disaster recovery or terrorist
events—thankfully are not daily occurrences. Real, mun-
dane applications with more than a few vehicles have been
lacking.

Recently, Kiva Systems announced availability of an au-
tomated material handling system targeted at pick-pack-and-
ship warehouses. The key innovation in the Kiva system is
the application of inexpensive robots capable of lifting and
carrying three foot square shelving units, called inventory
pods. The robots, called drive units, transport the inven-
tory pods from storage locations to stations where workers
can pick items off the shelves and put them into shipping
cartons. Throughout the day, the picker stays in her station
while a continuous stream of robots presents pick-faces. By
moving the inventory to the worker, rather than the other
way around, we typically see worker productivity at least
double. These results have been born out in pilot projects
and at a permanent installation that went online in the sum-

mer of 2006.
Unlike the commercial robotic applications mentioned

above, which consist of a handful of robots per deployment,
a typical installation of a Kiva system in a large warehouse
will involve hundreds of robots.

Field conditions for MVSs can be characterized in a vari-
ety of dimensions. One is the degree to which the environ-
ment is known or unknown. The extreme example of an un-
known environment is planetary exploration.1 Search-and-
rescue scenarios and land mine detection pose such chal-
lenging environments that robots to perform these tasks are
still a long way from being cost effective. In contrast, the
Kiva drive units operate in a controlled, known environment
which greatly simplifies the design problem and makes the
solution practical. The business case for installing a Kiva
system usually projects a one to three year return on invest-
ment.

Another distinguishing attribute of multi-agent systems is
the extent to which agents are cooperative—in the sense that
they must coordinate activities to achieve a system goal—
or are self interested and have independent, often conflict-
ing, objectives. Although the overall system is cooperative,
the Kiva robots are essentially independent. No robot de-
pends upon any other robot to accomplish its task, although
the system requires them all to succeed to complete a cus-
tomer order. Even in this cooperative setting, the multi-agent
paradigm helps break the system up into manageable com-
ponents with clear interfaces, knowledge, and responsibili-
ties (Lesser 1999).

Another common research topic is the resource-based na-
ture of most multi-agent systems. In a purely computational
setting, the resources may be memory and CPU time. In
physical systems, the resources may include space and ele-
ments of the environment that are need to accomplish tasks.
In the non-cooperative setting, the resource allocation is typ-
ically mediated, and therefore a great deal of the research
is focused on economic metaphors (Boutilier, Shoham, &
Wellman 1997; Wellman & Wurman 1998). With the ex-
ception of military scenario driven research (Butenko, Mur-
phey, & Pardos 2003), many fewer papers address resource
allocation when agents are cooperative, and among most of
them, the common theme is task negotiation (Jennings 1996;
Malone et al. 1988; Rosenschein & Zlotkin 1994). Al-
though task negotiation is an approach that can be applied to
the Kiva system, the issues addressed in the literature cap-
ture only a fraction of the complexity of the allocation prob-
lem. One goal of this paper is to present a fertile and inter-
esting non-military cooperative resource allocation problem
of practical importance.

The Distribution Center
Warehouses and Distribution Centers (DCs) play a critical
role in the flow of goods from manufacturers to consumers.
They serve as giant routing centers in which pallets of prod-
ucts from different manufacturers are split and the items are

1It is an extraordinary engineering and scientific accomplish-
ment that the Mars rovers are still in operation three solar years
past their expected useful lives.

redirected into outgoing containers. Figure 1 illustrates a
typical DC in which incoming pallets of products are first
stored in the reserve inventory location. As needed, cases
of product are moved into the forward location where they
are opened and individual items accumulated into shipping
cartons. The cartons may be plastic totes that are sent to a
retailer for in-store restocking, or boxes sent directly to the
consumer.

Although the tasks at the DC are necessary to the flow of
products, it is generally considered a cost center, in that the
work done at the facility adds no inherent value to the prod-
uct. Thus, there is constant pressure to reduce operational
costs and improve accuracy. However, surprisingly little has
changed in the industry in the last twenty years. New au-
tomation systems have been introduced, such as carousels
and high-speed sorters, but the majority of these have proven
to be inflexible and costly. Thus, many warehouses still use
manual processes or conveyors to move orders to the pick
locations.

Consider, for example, what happens if you order two
books from a highly sophisticated online book retailer. A
large Internet bookstore may carry a million different book
titles. Although they don’t stock all of these products
in their warehouses—some are shipped directly from the
publisher—the company likely stocks hundreds of thou-
sands of different products. The majority of the picking done
in this type of warehouse involves what is called open-case
picking; the retailer receives a case of books and ships them
out as individuals. Only occasionally does someone order
an entire case of books, and often that order is filled from a
different part of the warehouse.

Naturally, when you order your books, it would be ineffi-
cient for the retailer to send a picker out into the warehouse
to fetch the books for your order, and only your order. In-
stead, they may queue up several hours worth of orders and
compute the best way to batch work in the warehouse. Of-
ten, multi-line orders are split across different pickers be-
cause the elements of the order are stored in distant loca-
tions. Each picker in a zone of the warehouse fills a tote
with books that are part of several different customers’ or-
ders. The filled tote is conveyed to a mechanical sorting ma-
chine. A typical sorter is comprised of flat trays attached to
a revolving track. An induction worker empties the tote and
puts the items, barcode up, one-at-a-time, on empty trays as
they circulate around the machine. The sorter has a scan-
ner to identify the product on the tray, which allows it to
dump the product off the tray at the appropriate moment and
into a chute that serves the pack worker. To keep her busy,
the pack worker is working on several orders at a time, and
thus, on receiving products dumped off the tray, must re-
sort them into the individual orders. When the pack worker
has received all of the products you ordered, she puts them
together into a box, inserts the packing slip, attaches the
shipping label, and sends the completed box to the shipping
dock.

Thus, the process of filling your order for two books in-
volved four people: two pickers in different zones of the
warehouse each picking batches of products, someone to
split the batches back into individual items on the sorter, and

MFG

DC
Retailer

Consumer

Reserve Forward Shipping

Pallets Cases Cartons

Figure 1: An abstraction of product flow from manufacturer to consumer through a distribution center (DC).

a fourth person to collect the products kicked off the sorter
into customer orders. Moreover, it involved miles of expen-
sive conveyor and sorting equipment (Gilmour 2003), which
takes months to install and cannot be easily moved once set
up.

Myriad automation solutions exist in the industry, in-
cluding the aforementioned sorters and intelligent convey-
ors. Automated Storage and Retrieval Systems (AS/RSs)
can achieve very high throughput for highly specialized and
uniform products, like CDs. But among the automation so-
lutions that are designed for a broad range of product types
and sizes, the actual benefits have rarely lived up to the
promises. For example, carousels—vertical shelves attached
to a rotating track—appeared promising but have proven to
be bottlenecks in high throughput situations. The very best
of automation technologies claim to be able to achieve peak
rates of two to four hundred lines per hour per picker, but
most highly automated warehouses experience somewhat
less than that. In fact, the high-profile online-grocer Webvan
burned through several hundred million dollars in funding to
open a few, highly automated warehouses (with carousels),
but was unable to reduce costs to the point where they could
make money on the orders.

Traditional automation approaches have several draw-
backs:

• Costly: price tags for automated material handling sys-
tems typically run in the tens of millions of dollars.

• Long design cycles: most large DC projects takes 12 to
24 months to bring online, in part due to the difficulty of
installing and tuning the automation.

• Inflexible: once installed, conveyors, sorters, carousels,
and other systems are difficult and costly to move. They
also tend to be inflexible to changes in the inventory mix.

• Not expandable: few automation systems can be in-
crementally expanded, which forces companies to buy
enough capacity up front to handle several years worth
of anticipated growth. This results in excessive capital ex-
penditures for automation systems that run under capacity
for several years.

• Batch processing: like in the bookseller example above,
attempts to improve the efficiency of the picking task
leads to aggregating orders. Once the products are picked
in batches, the warehouse employs expensive automation
(sorters) to undo the aggregation and break the batches
back up into individual orders.

• Fixed locations: most of the automation systems rely on
products being stored in fixed locations, and most ware-
house management software assumes the pickable prod-
ucts are stored in a single location. Like in a retail
store, a particular width of shelving must be designated to
each product, which makes it difficult to adjust the shelf
space to accommodate changes in the stocking level. Fur-
ther, having fixed locations means that the replenishment
worker must move the incoming product to that specific
location in order to restock the product.

• Manual reslotting: because of the batch processing and
fixed locations, warehouse managers are constantly evalu-
ating inventory locations to keep workloads balanced and
the most popular products in the choicest picking loca-
tions. Reslotting requires a lot of manual movement of
product from one storage location to another.

The Kiva solution improves on all of these factors, and in
some cases, eliminates the problem completely.

The Kiva Solution
Figure 2 shows the physical elements of the Kiva solution:
an inventory pod and a drive unit. The drive units are small
enough to fit under the inventory pod, and are outfitted with
a mechanical lifting mechanism that allows them to lift pods
off the ground. The pods consist of a stack of trays, each of
which is subdivided into bins. A variety of tray sizes and bin
sizes create the mixture of storage locations for the profile of
products the warehouse stores.

Typically, a Kiva installation is arranged on a grid with
storage zones in the middle and inventory stations spread
around the perimeter. Figure 3 shows an exemplary layout,
with storage cells in green, drive units in orange, and station
queues on the left in purple and pink. The drive units are

Figure 3: A small region of a Kiva layout. The green cells represent pod storage locations, the orange ovals the robots (with
pods not pictured), and the purple and pink regions the queues around the inventory stations.

Figure 2: A Kiva drive unit and storage pod.

used to move the inventory pods with the correct bins from
their storage locations to the inventory stations where a pick
worker removes the desired products from the desired bin.
Note that the pod has four faces, and the drive unit may need
to rotate the pod in order to present the correct face. When a
picker is done with a pod, the drive unit stores it in an empty
storage location.

Each station is equipped with a desktop computer that
controls pick lights, barcode scanners, and laser pointers that
are used to identify the pick and put locations. Because ev-
ery product is scanned in and out of the system, overall pick-
ing errors go down, which potentially eliminates the need
for post-picking quality control. In general, every station is
capable of being either a picking station or a replenishment
station. In practice, pick stations will be located near out-
bound conveyors, and replenishment stations will be located
near pallet drop off points.

The power of the Kiva solution comes from the fact that
it allows every worker to have random access to any inven-
tory in the warehouse. Moreover, inventory can be retrieved
in parallel. When the picker is filling several boxes at the
same time, the parallel, random access ensures that she is
not waiting on pods to arrive. In fact, by keeping a small
queue of work at the station, the Kiva system delivers a new
pod face every six seconds, which sets a baseline picking
rate of 600 lines per hour.2 Peak rates can exceed 600 lines
per hour when the operator can pick more than one item off
a pod.3

For a large warehouse, the savings in personnel can be
significant. Consider, for example, what a Kiva implemen-
tation of the book warehouse would involve. A busy book-
seller may ship 100,000 boxes a day. With existing automa-
tion, this level of output would employ perhaps 75 workers

2This statistic is based on single unit picks and has been repro-
duced for extended periods in the Kiva test facility.

3This statistic was verified when a small Kiva demonstration
system was brought to a drugstore distribution center where opera-
tors picked at nearly 700 lines per hour.

picking, sorting, and packing orders over two 8-hour shifts.
Now consider a Kiva solution. At a conservative 500 lines
per worker per hour, and two lines per outgoing box, the
day’s work would require 400 hours of picking. Maintain-
ing the 16 hours of picking a day, the warehouse would need
25 Kiva inventory stations to generate the 200,000 outgo-
ing boxes. It would take about 200 drive units to serve the
25 pickers at the stations, delivering and storing inventory
pods.4 However, the warehouse can be run with 50 fewer
employees, at $10/hour for 16 hours a day, which means the
book warehouse is saving $8,000/day. With 250 workdays,
the net savings is $2m/year.

In addition to the productivity gains, the book seller would
experience several other benefits by using the Kiva system:
• Greater accountability: each order is filled completely by

a single individual, improving accuracy and accountabil-
ity by reducing the number of “touches” on the product.

• No downstream dependencies: no one worker’s produc-
tivity depends on the performance of workers earlier in a
sequential process. Instead, each worker’s station is com-
plete and self-contained.

• No batch processing: in a Kiva warehouse, everything is
done in real time. An order can literally be filled within
minutes of being received.

• Location-free replenishment: because any station can be
used to put product away, the replenishment process is
greatly simplified.

• Adaptive slotting: because the resolution of the allocation
of storage is bins rather than the faces of static shelves, the
system much more easily adapts to changes in stocking
policies. Every product is automatically given just enough
pick faces.

• No single point of failure: unlike a conveyor, if a drive
unit fails, it does not stop the whole floor. The rest of the
system continues to operate, and most likely there is no
noticeable impact on productivity.

• Rapid deployment: because there is no fixed infrastruc-
ture, a 50 station warehouse can be brought online in a
matter of weeks rather than months. Kiva has set up small,
two-station systems in a single day.

• Spatial flexibility: Kiva systems can accommodate poles,
flow into multiple rooms, and handle other oddities of the
environment. By incorporating automated lifts, a Kiva in-
stallation can use mezzanines to fill the vertical space.

• Expandability: if a warehouse needs more capacity, they
simply add more pods, drives and stations.
The last three bullets combine in possibly game-changing

ways. The ease with which warehouses can be brought on-
line and expanded means that managers do not need to pur-
chase automation with the capacity to handle the volume
forecast for five years out. Instead, they need only a big
enough building, and they can buy the Kiva components to
handle the growth as it occurs. Furthermore, companies can

4The actual ratio of drive units to workers varies depending on
attributes of the products and order profiles.

plan and deploy warehouses in months rather than years, en-
abling a faster, more accurate response to changing market
conditions.

AI Techniques Used
The Kiva system is highly influenced by AI techniques,
though many of the techniques used are textbook implemen-
tations of well-known algorithms. The software architecture
reflects the fact that the Kiva system is, by its very nature,
a multi-agent system. Each drive unit and each station is
a computational device that can receive requests and act on
them. At the same time, the system embodies a massive,
real-time, resource allocation problem. The resources in
question include shelf space at the station, drive units, stor-
age pods, inventory, and physical space.

Multi-agent System
Each robot is represented in the system by a drive unit agent
(DUA), and each station by an inventory station agent (ISA).
System-wide resource allocation is centralized in the Job
Manager (JM), which also communicates with the ware-
house management system.5 Agents communicate with
each other via XML messages. Well over 100 message types
are sent among the agents.

The JM receives customer orders that need to be filled,
and assigns drives, pods, and stations to carry out the tasks.
Figure 4 illustrates the multi-agent nature of the architecture.
The combination of the resource allocation (in the JM) with
task planning, path planning, and motion planning (in the
DUA) is the control stack with abstraction layers typically
seen in the literature (Simmons et al. 2002). The ISA on the
station computer manages the GUI and the picking lights,
and communicates with the other agents to receive, request,
and report accomplishment of its tasks.

We found the following rules useful in deciding how to
partition the system into agents:

• Physical correspondence: in most situations, it makes
sense for there to be one agent for each physically distinct
object.

• Information encapsulation: each agent should know just
enough information to do its job. This cuts down on the
amount of information that needs to be communicated or
accessed through the database.

• Single-agent ownership: all of the important data ele-
ments are owned by only one agent. Although multiple
agents may need the information, only one can perma-
nently change it and write it to the database.

• Separation by job: when there is a resource allocation that
needs to be done whose antecedents and effects can be
separated from other tasks, it is a candidate for encapsu-
lating as a separate agent.

These rules also guide feature implementation, because
the information boundaries force some types of solutions.
The following example illustrates some of the above points.

5Most of Kiva’s customers have existing warehouse manage-
ment software that pass orders into the Kiva system.

Task Planning

Path Planning

Motion Planning
and Control

Resource Allocation
Job Manager

Workflow manager
Inventory Station Agent Drive Unit Agent

Figure 4: The multi-agent control system.

Suppose the JM decides that drive X should deliver pod Y
to station Z so that the worker can pick a product off the A
face of pod Y. The JM tells the station to ask drive X to fetch
pod Y. The station does not need to know where pod Y is
located; if the drive unit doesn’t already have pod Y, it will
look up its location and go fetch the pod. Similarly, when
the station asks drive X to present the A face of pod Y, it
does not tell the drive what it intends to do with pod Y, only
that it needs to see face A. Once the pick tasks are complete,
the station releases the pod, and the DUA, if it has no other
tasks for the pod, requests a storage location.

The benefits of the multi-agent architecture can be divided
into two classes: computational and organizational. The
computational benefits include a natural decomposition of
the computation that can be spread across as many servers
as necessary. In addition, the multi-agent design makes it
clear where to focus effort when making the system robust
to failures. Every agent must be able to handle not just er-
ror responses, but the outright failure of the agents it com-
municates with. The organizational benefits include code
compartmentalization, which makes it easier to know where
to put certain functionality. The multi-agent design also es-
tablishes clear boundaries of ownership among the software
developers.

Path Planning
The grid constitutes a 2-D graph of paths which may be
given weights at design time. The drive units use a standard
implementation of A* to plan paths to storage locations and
inventory stations. The DUAs also maintain a list of high
level goals, and are responsible to prioritizing the goals and
accomplishing them as efficiently as possible. For instance,
more than one station may ask for the same pod, and a sta-
tion may ask to see more than one face of a pod. The DUA
decides which station to visit first, and in what sequence to
show the faces to minimize travel time. The DUA uses a
simple AI-style planner to make these decisions.

Resource Allocation
Our overarching design goal is to keep the pickers and
replenishment workers as busy as possible with the least

amount of hardware, warehouse space, and inventory on
hand. One can imagine keeping everyone busy by having
100 robots and a complete copy of all of the products per
worker, but it would be unnecessarily expensive. Clearly,
good resource allocation algorithms are critical to getting
the work done with a cost-effective amount of hardware.

Although one could describe the resource allocation task
as one large, global optimization problem, it is impractical to
do so for a variety of reasons. First, the resource allocation
decisions must be made in real time—there is no window in
which to do the offline computation because most customers
are receiving orders throughout the day for same day ship-
ping, and are constantly re-prioritizing jobs to match truck
schedules. Second, the problem descriptions are quite large,
and may include tens of thousands of orders and hundreds
of thousands of bin choices. Third, the optimal solution also
depends on the actual paths and interactions of the vehicles,
which is dynamic. Fourth, the system includes constant hu-
man interactions, with their variable, and unpredictable, re-
sponse times. The human variability and the dynamic nature
of the rest of the system means that any optimized solution
is likely to be fragile.

Instead of attempting global optimization, we take the ap-
proach of making decisions on the fly using utility-based
heuristics, where the utility is measured as the cost to the
warehouse owner. The decisions that the system makes us-
ing utility metrics include:

• Job Assignment: this is the task of assigning orders to
workers at stations. The system costs go down when we
can pick more than one item off a pod, which is more
likely to happen when the orders at the station share com-
mon products. Thus, the heuristic looks at the similarity
of this job to other jobs already assigned to the station.
The assignment problem is sometimes further constrained
by that fact that some stations or workers may have spe-
cialized capabilities, like gift wrapping, that are required
by the order.

• Pick-task assignment: once a job is assigned to a station,
we pick the pods and drive units that will be used to bring
over the products that go into the carton. The heuristic
combines distance and the number of needed products
that are available on the candidate pods when making this
selection decision.

• Replenishment-task assignment: when the time comes to
replenish a case of product, the system decides where to
store it. There are obviously bin packing issues involved
in selecting appropriate bins based on the dimensions of
the case, but there are other features to consider, like the
current location of the pod.

• Pod storage: when a station is done with a pod, the system
selects an open parking spot for the pod. The location of
the selected storage cell affects not only the time to free
up the current drive unit, but also the time it will take to
deliver that pod the next time it is needed. The heuris-
tic balances these costs and keeps the pods that are more
likely to be used closer to the stations, and the pods with
slow products in the back of the room.

We believe that the utility-based approach gives an un-
precedented amount of flexibility and adaptability to the sys-
tem. The system runs well through a wide range of configu-
rations and operational challenges. At one point during a de-
ployment in a customer’s warehouse, an electrician needed
to drive a large cherry-picker onto the floor to do some elec-
trical work in the rafters. Using Kiva’s software tools, we
were able to block off a large area of the floor and give the
cherry picker access to the pole. The system routed the robot
traffic around the keep-out zone and was able to continue to
supply the workers with inventory so that they were able to
continue filling orders.

Fielded Systems
In the preceding sections, we used a hypothetical warehouse
to illustrate some of the drawbacks of existing automation
and contrast them with a Kiva implementation. We now
present some results from actual Kiva deployments, to the
extent permitted by the customers. In the spring of 2005,
Kiva set up two small installations and ran each for three
months. Since both systems were pilots, we did only min-
imal integration with the existing warehouse management
systems. More recently, Kiva installed a permanent system
in an warehouse in Pennsylvania for a major office supply
retailer.

The first pilot was conducted in a candy warehouse that
supplied samples to salespeople. In the candy warehouse
before the Kiva pilot, the picker drove around the warehouse
with a forklift fetching the needed products from pallet racks
and returned them to a sorting and packing station. With the
Kiva system, the worker remained at the station while the
candy samples came to her. The picker did five to six times
more orders with Kiva than with the pre-existing, manual
system. By the end of the pilot, the Kiva robots had ex-
panded through doorways into three different rooms of the
warehouse. The project was very successful, and the ware-
house manager at that facility did not want the system taken
out when the pilot contract expired.

The second pilot took place in a distribution center for a
Fortune 500 office supply company. This particular busi-
ness unit filled delivery orders for office supplies. After a
successful 3-month pilot that proved both the effectiveness
and robustness of the Kiva system, the retailer purchased a
permanent installation for one of its warehouses in Pennsyl-
vania. This second system came online during the summer
of 2006 with 30 robots and five stations. Over the next three
months, the office supply company purchased more Kiva
equipment, until the system more than quadrupled in size,
and now routinely accounts for half of the facility’s output
each day. At well over 120 robots working 24 hours day,
we believe that this warehouse represents the largest MVS
in existence in a single facility. Most importantly to our cus-
tomer, pick workers on the Kiva side fill orders at more than
twice the rate of workers using the old conveyorized system.

In addition to these installations, Kiva has a permanent
demonstration facility in Woburn, Massachusetts to show-
case the many features of the picking system. The demon-
stration warehouse has several different station configura-
tions, 250 inventory pods and 60 drive units. The facility

also includes a vertical lift to demonstrate using the Kiva
system in conjunction with mezzanines. Figure 5 shows the
demonstration facility.

Design and Development

The Kiva Material Handling System (MHS) was written in
Java, including all of the agents mentioned above and several
tools which are used by the warehouse staff to control the or-
der flow and to manage the hardware. A MySQL database
is used to persist the data, though the software can use any
SQL database. The vast majority of the software was de-
signed and written by a team of 13, led by two PhDs with
AI backgrounds and two more with expertise in control sys-
tems. The hardware was designed by a similarly sized team
of mechanical and electrical engineers.

In addition to the MHS, we have developed an elaborate
simulation of the robotic fulfillment system using a discrete
event programming language. We use this tool to design
customer installations and to explore algorithms and analyze
their systemic impacts. The simulation includes detailed
modeling of the drive unit motion, pod geometry, and the hu-
man operations, and can be fed simulated order data, or ac-
tual customer data. We have simulated installations with as
many as 150 picking stations, 1500 drive units, and 20,000
storage pods. Such a facility would have the capacity of the
largest customer site we know of.

Although Kiva has built a working and cost effective
system for everyday use in warehouses, there is plenty of
room for improvement. To make it easy for researchers
to study MVS problems like those found in the Kiva
system, we have created an open-source, stylized ware-
house environment called AlphabetSoup (Hazard, Wurman,
& D’Andrea 2006). The AlphabetSoup warehouse must
build words out of letter tiles. The letter tiles are stored
in buckets, and moved around the warehouse by bucket-
Bots. The project details and source code can be found at
http://research.csc.ncsu.edu/alphabetsoup/.

Conclusion

So far, the Kiva system has been well received by the mar-
ketplace. As the Kiva approach spreads through the indus-
try, there are likely to be many interesting new computa-
tional and organizational problems that need to be solved.
In this paper, we describe some of the interesting aspects of
the system that clearly draw on an AI heritage, while high-
lighting some of the very challenging allocation and design
problems. In addition to the issues outlined here, there are
a large number of robotic research topics that would benefit
systems like Kiva’s.

We have found the opportunity to work on systems in-
volving hundreds of robots to be very energizing, and we
hope it will inspire others to work on related issues. In the
very near future, we look forward to the opportunity to stand
on an observation platform in a Kiva deployment and watch
several hundred mobile robots busily getting work done.

Figure 5: The Kiva demonstration facility.

Acknowledgments
Building a working MVS requires a core set of great me-
chanical, electrical, and software engineers. It is yet an-
other thing to turn it into a commercial product and manage
the manufacture, assembly, and deployment of these sys-
tems. We thank the world-class Kiva employees who have
breathed life into this vision.

References
Boutilier, C.; Shoham, Y.; and Wellman, M. P. 1997. Eco-
nomic principles of multi-agent systems. Artificial Intelli-
gence 94(1):1–6.
Butenko, S.; Murphey, R.; and Pardos, P. M., eds. 2003.
Cooperative Control: Models, Applications and Algo-
rithms. Springer.
Gilmour, K. 2003. Amazon warehouse, amazon adventure.
Internet Magazine.
Hazard, C. J.; Wurman, P. R.; and D’Andrea, R. 2006.
Alphabet soup: A testbed for studying resource allocation
in multi-vehicle systems. In Proceedings of the 2006 AAAI
Workshop on Auction Mechanisms for Robot Coordination,
23–30.
Jennings, N. R., and Bussmann, S. 2003. Agent-based con-
trol systems: Why are they suited to engineering complex
systems? IEEE Control Systems Magazine 61–73.
Jennings, N. R. 1996. Coordination techniques for dis-
tributed artificial intelligence. In O’Hare, G. M. P., and
Jennings, N. R., eds., Foundations of Distributed Artificial
Intelligence. Wiley. 187–210.

Konolige, K.; Fox, D.; Ortiz, C.; Agno, A.; Eriksen, M.;
Limketkai, B.; Ko, J.; Morisset, B.; Schulz, D.; Stewart,
B.; and Vincent, R. 2004. Centibots: Very large scale dis-
tributed robotic teams. In Proceedings of the International
Symposium on Experimental Robotics.
Lesser, V. R. 1999. Cooperative multiagent systems: A
personal view of the state of the art. IEEE Transactions on
Knowledge and Data Engineering 11(1):133–142.
Malone, T. W.; Fikes, R. E.; Grant, K. R.; and Howard,
M. T. 1988. Enterprise: A market-like task scheduler for
distributed computing environments. In Huberman, B. A.,
ed., The Ecology of Computation. North Holland.
Rosenschein, J. S., and Zlotkin, G. 1994. Rules of En-
counter. Cambridge: The MIT Press.
Simmons, R.; Smith, T.; Dias, M. B.; Goldberg, D.; Hersh-
berger, D.; Stentz, A.; and Zlot, R. 2002. A layered archi-
tecture for coordination of mobile robots. In Schultz, A.,
and Parker, L., eds., Multi-Robot Systems: From Swarms
to Intelligent Automata. Kluwer.
Wellman, M. P., and Wurman, P. R. 1998. Market-aware
agents for a multiagent world. Robotics and Autonomous
Systems 24:115–25.

