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Abstract: A method for state-estimation of Takagi–Sugeno descriptor systems (TSDS) affected by
unknown inputs (UI) has been presented here. For ease of implementation’s sake, the proposed
observers are not in descriptor form, but in usual form. Sufficient existence conditions of the
unknown input observers (UIOs) are given and strict linear matrix inequalities are solved to deter-
mine the gain of the observers. If the perfect UI decoupling is not possible, the UIO is designed in
order to minimise the L2-gain from the UI to the state estimation error. The two previous objectives
can be mixed in order to decouple the estimation to a subset of the UI, while attenuating the L2-gain
from the other UI to the estimation. The proposed UI observers are used for robust fault diagnosis.
Fault diagnosis for TSDS is performed by designing a bank of observers. A simple decision logic
and thresholds setting allow to determine the occurring fault. The results are established for both
the continuous and the discrete time cases. The proposed method is illustrated by a numerical
example.
1 Introduction

The Takagi–Sugeno (TS) model proposed by Takagi and
Sugeno [1] is a well-known structure to represent nonlinear
systems into several linear fuzzy models. In the last two
decades, the control and the observation of TS systems
have become challenging problems that received a con-
siderable amount of attention. In [2], stability analysis and
controller design are addressed, solutions are derived in
the linear matrix inequality (LMI) formalism. Relaxed suffi-
cient conditions for fuzzy controllers and fuzzy observers
are proposed in [3, 4] via a multiple Lyapunov function
approach.

The descriptor formalism is very attractive for system
modelling, as pointed out in [5], since it describes a wider
class of systems including physical systems with non-
dynamic constraints (e.g. algebraic relations induced in
interconnected systems such as power transfer networks
or water distribution networks) or jump behaviour. The
enhancement of the modelling ability is because of the
structure of the dynamic equation, which encompasses not
only dynamic equations, but also algebraic relations.

Since both TS and descriptor formalisms are attractive in the
field of modelling, thus the TS representation has been gener-
alised to descriptor systems. The stability and the design of
state-feedback controllers for TS descriptor systems (TSDS)
are characterised via LMI in [6, 7], in particular, the
problem of nonlinear model following is treated in [7].
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54516 Vandoeuvre-lès-Nancy, Cedex, France

D. Koenig is with the Laboratoire d’Automatique de Grenoble UMR 5528
CNRS-INPG-UJF, BP 46, 38402 Saint Martin d’Hères, Cedex, France

E-mail: benoit.marx@ensg.inpl-nancy.fr
IET Control Theory Appl., 2007, 1, (5), pp. 1487–1495

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on January 2
Robust output feedback, and H1-control are considered for
TSDS in [8] and [9], respectively. The study of TSDS is envi-
saged with interval methods in [10], in order to account the
different operating points. Unfortunately, the problem of
observer design, and especially the design of unknown input
observers (UIOs), has resulted in very few works.

The design of UIO is a crucial problem since, in many
practical cases, all input signals cannot be known.
Moreover, this class of observers is widely used in the
area of fault diagnosis, even if all the inputs are known
(see Chapter 3 in [11]). The design of UIO has received
considerable attention in the case of usual (in opposition to
descriptor) linear systems [12], descriptor systems [13–15]
or TS systems [16]. Unfortunately, to the best of the
authors’ knowledge, the design of UIO has not been treated
in the generic case of TSDS. The aim of this paper is not
only to generalise the existing works on UIO design to
TSDS, but also to apply this new observer in the field of
fault diagnosis of TSDS, which has not been treated so far.

This paper gives a simple extension to TSDS of the
design of observers for the state estimation in the presence
of UI. Under some sufficient conditions, the design of
the observer is reduced to the determination of a matrix.
The choice of this parameter is performed by solving
strict LMIs. If the estimation error cannot be decoupled
from the UI, an L2 observer is proposed to minimise the
influence of the UI on the state estimation. The two
design objectives can be mixed by decoupling the state esti-
mation from a subset of the UI, and minimising the L2-gain
between the other UI and the state estimation error. The
designed observers are used for fault diagnosis, since the
UI can encompass the faults and the disturbances affecting
the system. Designing several observers attenuating the dis-
turbance effect, and decoupling the estimation from all
faults, but one lead to the well-known generalised observer
scheme (GOS) for fault diagnosis [11]. The design of obser-
vers is detailed both in the continuous time case and in the
discrete time case.
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The paper is organised as follows: the class of studied
systems is defined in Section 2 and the main results about
UIO design are detailed in Section 3. Firstly, the definition
of the UIO and the sufficient existence condition are estab-
lished. Secondly, the computation of the gains of the obser-
ver is established. The design of L2 observers is treated in
Section 4. Section 5 deals with the design of observers for
both UI decoupling and disturbance attenuation. The appli-
cation to fault diagnosis is studied in Section 6. Section 7 is
devoted to a numerical example.

2 Takagi–Sugeno descriptor systems

To begin with, the class of systems considered in this
paper is described. In the continuous time case, a TSDS is
defined by

E_x(t) ¼
Xr
i¼1

hi(w(t))(Aix(t) þ Biu(t) þ Did(t)) (1)

y(t) ¼ Cx(t) þGd(t) (2)

In the discrete time case, a TSDS is defined by

Exkþ1 ¼
Xr
i¼1

hi(wk)(Aixk þ Biuk þ Didk) (3)

yk ¼ Cxk þGdk (4)

where x [ Rn is the state variable, u [ Rnu is the control
input, d [ Rq is the unknown input (disturbance, actuator
noise or hidden message in the recovering framework)
and y [ Rm is the measured output. The matrices
E, Ai, Bi, Di, C and G are supposed to be real, known, con-
stant and with appropriate dimensions according to the defi-
nition of the signals. The matrix E may be singular. The
activating functions, denoted hi(w(t)), for i ¼ 1, . . . , r, are
normalised, and satisfy the following constraints

0 � hi(w(t)) � 1,
Xr
i¼1

hi(w(t)) ¼ 1, 8t

0 � hi(wk) � 1,
Xr
i¼1

hi(wk) ¼ 1, 8k

The decision variable w(t) (or wk) is supposed to be real-
time accessible, depending on the control input or on the
measured output. Assume that the same matrix E appears
in all the different sub-models is not restrictive if we con-
sider that the structure of the differential or algebraic
relations is imposed by the physical structure of the
system, which generally does not change with time. This
formalism still encompasses the varying parameters or the
nonlinearities since the matrices Ai are different one from
another, and since the activating functions introduce the
nonlinear dynamics. An analogous argument justifies the
single nature of the output matrix C. The available measure-
ments are determined by the location and the nature of the
sensors, which generally do not change (the sensors are
not removed during the operating time).

3 Design of UI decoupling observers

In this section, our aim is to design a multiple UIO. The UIO
is used widely in the field of fault detection and isolation for
dynamic systems, because the fault signals are generally
unknown. Moreover, a measured signal can be considered
1488
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as unknown in order to isolate the default corrupting this
particular signal (see Chapter 3 in [17]).

In this study, the proposed observers are not in descriptor
form, in order to reduce the implementation complexity. In
the continuous-time case, the proposed multiple UIO is
defined by

_z(t) ¼
Xr
i¼1

hi(w(t))(Niz(t) þMiu(t) þ Li y(t)) (5)

x̂(t) ¼ z(t) þ T2 y(t) (6)

In the discrete-time case, the proposed multiple UIO is
defined by

zkþ1 ¼
Xr
i¼1

hi(wk)(Nizk þMiuk þ Li yk) (7)

x̂k ¼ zk þ T2 yk (8)

The problem of unknown input decoupling observer
(UIDO) design is to find the gains of the UIDO (5 and 6)
[resp. (7 and 8)], namely Ni, Mi, Li and T2, in order that
the estimated state x̂ asymptotically tends to the state of
(1 and 2) [resp. (3 and 4)]. In other words, the objective is
that the estimation error defined by e(t) ¼ x(t) � x̂(t)
[resp. ek ¼ xk � x̂k) tends to zero when t ! 1 (resp.
when k ! 1), regardless of the unknown input the
control input and the initial state.

Firstly, a sufficient rank condition for UI decoupling is
given in Lemma 1. Secondly, a sufficient LMI condition
for the convergence of the continuous-time UIO is given
in Lemma 2 (it is extended to the discrete-time case in
Corollary 1). Finally, the results are gathered in Theorem
1 and a design algorithm is given.

Lemma 1: There exists a continuous-time (resp. discrete-
time) UIDO (7 and 8) for (1 and 2) [resp. (7 and 8) for (3
and 4)] if the following condition holds

rank X ¼ rank
D1 � � � Dr

Ir �G

� �
þ nþ rank G (9)

Proof: The estimation error e(t) ¼ x(t) � x̂(t) is given by

e(t) ¼ x(t) � x̂(t)

¼ x(t) � z(t) � T2Cx(t) � T2Gd(t)

Assume that there exist T1 and T2 such that, the following
equations hold

T1Eþ T2C ¼ In (10)

T2G ¼ 0 (11)

With (10) and (11), the estimation error becomes
e(t) ¼ T1Ex(t) � z(t). Its time derivative is given by

_e(t) ¼ T1E_x(t) � _z(t)

¼
Xr
i¼1

hi(w(t))[T1(Aix(t) þ Biu(t) þ Did(t))

� Niz(t) �Miu(t) � Li y(t)]

¼
Xr
i¼1

hi(w(t))[Nie(t)

þ (T1Ai � NiT1E� LiC)x(t)

þ (T1Bi �Mi)u(t) þ (T1Di � LiG)d(t)] (12)
IET Control Theory Appl., Vol. 1, No. 5, September 2007
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The time derivative of the estimation error is given by

_e(t) ¼
Xr
i¼1

hi(w(t))Nie(t) (13)

if the following constraints hold for i ¼ 1, . . . , r

In ¼ T1Eþ T2C (14)

0 ¼ T2G (15)

0 ¼ T1Ai � NiT1E� LiC (16)

0 ¼ T1Bi �Mi (17)

0 ¼ T1Di � LiG (18)

In order to find the gains of the UIDO, according to the con-
straints (14–18), new parameters Ki ¼ NiT2 � Li are intro-
duced in (16). Then, the UIDO exists if, for i ¼ 1, . . . , r, the
following statements are true

Ni ¼ T1Ai þKiC (19)

In ¼ T1Eþ T2C (20)

0 ¼ T2G (21)

0 ¼ T1Di þKiG (22)

Mi ¼ T1Bi (23)

Li ¼ NiT2 �Ki (24)

Verifying the constraints (19–22) reduces to finding
Q [ Rn�(nþm(rþ1)) such that

QX ¼ Y (25)

Ni ¼ QYi (26)

where Q, is given by

Q ¼ [T1 T2jK1 K2 � � � Kr] (27)

Once Q is known, Mi and Li are deduced from (23) and
(34), respectively. Equation (25) is solvable in the variable
Q if the following condition holds

rank
X

Y

� �
¼ rank X (28)

where the matrices X [ R(nþm(rþ1))�(nþq(rþ1)) and
Y [ Rn�(nþq(rþ1)) are defined by

X ¼

E 0n�q

C G

0rm�n 0rm�q

��������
D1 � � � Dr

0m�q . . . 0m�q

Ir �G

2
664

3
775 (29)

Y ¼ [In 0n�q

��0n�rq] (30)

Obviously, with (30) and (29), the condition (28) becomes

rank
X

Y

� �
¼ nþ rank Gþ rank

D1 � � � Dr

Ir �G

� �

rank X ¼ rank

E 0

C G

0 0

��������
D1 � � � Dr

0 � � � 0

Ir �G

2
664

3
775

Then (28) is equivalent to (9). In the discrete-time case, the
proof is very similar, thus it is omitted. A

Lemma 2: The estimation error of the UIO (5 and 6) for
(1 and 2) tends to zero if there exists a symmetric positive
definite matrix P [ Rn�n and a matrix Z [ Rn�(nþm(rþ1))
IET Control Theory Appl., Vol. 1, No. 5, September 2007
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verifying the following LMI for i ¼ 1, . . . , r

(YXþYi)
TPþPYXþYiþ (X?Yi)

TZT
þZX?Yi , 0 (31)

where � is the Kronecker product. The matrices X and Y
are defined by (29) and (30), respectively, and
Yi [R(nþm(rþ1))�n are defined by

Yi ¼

Ai

0m�n

ei�C

2
64

3
75

where ei [Rr�1 is the column vector with all its com-
ponents equal to 0, except the ith equal to 1.

Proof: Suppose that (9) is satisfied, then (25) is solvable and
the solutions Q are given by

Q ¼ YXþ
þ ZX? (32)

where Z [ Rn�(nþm(rþ1)) is an arbitrary matrix.
With (26) and (32), the matrices Ni are defined by

Ni ¼ YXþYi þ ZX?Yi. The state estimation error tends to
zero if the polytopic system (13) is stable. A well-known stab-
ility condition for polytopic system (see [18]) is the existence
of a symmetric positive definite matrix P verifying
NT

i Pþ PNi , 0 for i ¼ 1, . . . , r. Then the UIDO provides
an estimate of the system state if there exists a matrix Z such
that P(YXþYi þ ZX?Yi) þ (YXþYi þ ZX?Yi)

TP , 0, for
all i ¼ 1, . . . , r. Setting Z ¼ PZ then (31) is obtained,
which completes the proof. A

This result is extended to the discrete-time case.

Corollary 1: The estimation error of the UIO (7 and 8) for
(3 and 4) tends to zero if there exists a symmetric positive
definite matrix P [ Rn�n and a matrix Z [ Rn�(nþm(rþ1))

verifying the following LMI for i ¼ 1, . . . , r

Fi (X?Yi)
TZT

Z(X?Yi) �P

� �
, 0 (33)

where Fi is defined by

Fi ¼ (X?Yi)
TZT(YXþYi) þ (YXþYi)

TZ(X?Yi)

þ (YXþYi)
TP(YXþYi) � P

Proof: Proof is similar to the continuous-time case, apart
from the condition for the stability of the state estimation
error. In the discrete-time case, ek tends to zeros if there
exists a symmetric positive definite matrix P such that
NT

i PNi � P . 0 for i ¼ 1, . . . , r. With PZ ¼ Z, the LMI
(33) follows. A

Theorem 1: There exists a continuous-time (resp. discrete-
time) UIO (5 and 6) for (1 and 2) [resp (7 and 8) for
(3 and 4)] if the condition (9) is satisfied and if there
exists a symmetric positive definite matrix P [ Rn�n and
a matrix Z [ Rn�(nþm(rþ1)) verifying (31) [resp. (33)], for
i ¼ 1, . . . , r.

Finally, the design of UIO for continuous-time (resp.
discrete-time) TSDS is reduced to the following procedure.

Step 1. Verify the existence condition (9).
Step 2. Solve the LMI (31) [resp. (33)] in P and Z.
Step 3. Compute Z with Z ¼ P�1Z. For a given Z, Q is
deduced from (32), the matrices Ni, Mi and Li are derived
from (19), (23) and (24), respectively.
1489
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This result unifies the results obtained, on the one hand,
in the field of the descriptor systems with UI [19–21]
and, on the other hand, in the field of the TS systems with
UI [16]. It is useful because a TSDS cannot be reduced,
either to a single singular system (it would not handle the
nonlinearities because of the weighting functions hi) nor
to a regular TS system (it would not handle the algebraic
relation between the state variables). The existence con-
dition (9) can be linked to previous works concerning
single descriptor systems [20, 21]. Considering (9) for a
single descriptor system, would lead to the condition

rank

E D1 0

C 0 G

0 G 0

2
4

3
5 ¼ rank

D1

G

� �
þ nþ rank G (34)

One can note that (34) is equivalent to the condition (21) or
(31) of [20], and is also equivalent to the condition (A3a)
in [21]. Moreover, the present paper gives only sufficient
conditions, whereas [20] gave necessary and sufficient con-
ditions. This difference appears because the present paper is
basically written for TS systems, thus the weighting func-
tions cause conservatism since the matrix

Pr
i¼1 hi(w(t))Ai

can take all the possible values in the polytope defined by
its vertices Ai.

4 Design of UIAOs

In this section, the aim is to design an observer for TSDS in
order to minimise the influence of the UI on the state esti-
mation when the perfect decoupling is not possible. The
chosen criterion to minimise is the L2-gain between the
unknown input and the state estimation error. This approach
is less restrictive than the design of a UIO since the structural
condition (9) is partially relaxed.

As pointed out in the section of UIO design, the esti-
mation error e is governed by a non-singular TS system
(12), thus in order to bound the L2-gain from the UI to e,
and establish the sufficient conditions of the so-called
L2-observer, the following lemma concerning L2-gain of
TS-systems is needed.

Lemma 3 [18]: Consider the continuous-time TS-system
defined by

_x(t) ¼
Xr
i¼1

hi(w(t))(Aix(t) þ Biu(t)) (35)

y(t) ¼
Xr
i¼1

hi(w(t))Cix(t) (36)

and the discrete-time TS-system defined by

xkþ1 ¼
Xr
i¼1

hi(wk)(Aixk þ Biuk) (37)

yk ¼
Xr
i¼1

hi(wk)Cixk (38)

The system (35 and 36) [resp. (37 and 38) is stable and veri-
fies kyk2 , gkuk2 if there exists a symmetric positive defi-
nite matrix P [ Rn�n such that (39) [resp. (40)] is satisfied
for i ¼ 1, . . . , r.

AT
i Pþ PAi þ CT

i Ci PBi

BT
i P �g2I

" #
, 0 (39)
1490
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AT
i PAi þ CT

i Ci � P AT
i PBi

BT
i PAi BT

i PBi � g2I

" #
, 0 (40)

For a given real-positive g, an observer is said to be an
unknown input attenuating observer (UIAO) of L2-gain g,
if the state estimation error, e, and the unknown input, d,
satisfy kek2 , gkdk2.

Theorem 2: There exists a UIAO (51 and 61), with an
L2-gain lower than g, for the system (1 and 2), if the con-
dition (41) is satisfied, and if there exist a symmetric posi-
tive definite matrix P [ Rn�n and matrices Z [ Rn�(nþm)

and Ki [ Rn�m, verifying the LMI (42) for i ¼ 1, . . . , r.

rank
E 0

C G

� �
¼ nþ rank G (41)

Ci,1 Ci,2

CT
i,2 �g2Iq

" #
, 0 (42)

where the matrices Ci,1, and Ci,2 are given by

Ci,1 ¼ PYXþ
1 Ai þ ZX?

1 Ai þKiC

þ (PYXþ
1 Ai þ ZX?

1 Ai þKiC)T
þ In

Ci,2 ¼ PYXþ
1 Di þ ZX?

1 Di þKiG

where Xþ
1 [ R(nþq)�n, Xþ

2 [ R(nþq)�m, X?
1 [ R(nþm)�n and

X?
2 [ R(nþm)�m are defined by

E 0

C G

� �þ
¼ Xþ

1 Xþ
2

� �
E 0

C G

� �
E 0

C G

� �þ
� Inþm ¼ X?

1 X?
2

� �

Proof: If (41) is satisfied, then there exist T1 and T2 such
that

[T1 T2]X ¼ Y

where X and Y are given by

X ¼
E 0

C G

� �
, Y ¼ [ In 0n�m ]

and, for any arbitrary matrix Z, T1 and T2 are given by

T1 ¼ YXþ
1 þ ZX?

1 (43)

T2 ¼ YXþ
2 þ ZX?

2 (44)

Following the proof of Theorem 1, if (19), (23) and (24)
hold, the state estimation error e(t) ¼ x(t) � x̂(t) is
governed by

_e(t)¼
Xr
i¼1

hi(w(t))((T1AiþKiC)e(t)þ (T1DiþKiG)d(t))

(45)

According to Lemma 3, ke(t)k2 , gkd(t)k2 if there exists a
symmetric positive definite matrix P such that the following
LMI hold for i ¼ 1, . . . , r

Ci þ In PT1Di þ PKiG

DT
i T

T
1PþGTKT

i P �g2Iq

� �
, 0
IET Control Theory Appl., Vol. 1, No. 5, September 2007
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where Ci is given by

Ci ¼ (T1Ai þKiC)TPþ P(T1Ai þKiC)

With Ki ¼ PKi and Z ¼ PZ, the LMI (42) follows, which
completes the proof. A

Remark 1: Obviously, condition (41) is less restrictive
than (9).

Remark 2: g2 can be considered as a variable to be mini-
mised during the LMI optimisation, to obtain an optimal
UI attenuation

Corollary 2: There exists a UIAO (7 and 8) with an L2-gain
lower than a given real positive g for the system (3 and 4), if
the condition (41) is satisfied, and if there exist a symmetric
positive definite matrix P [ Rn�n, and matrices
Z [ Rn�(nþm) and Ki [ Rn�m, verifying the following
LMI for i ¼ 1, . . . , r

In � P 0 FT
i,1

0 �g2In FT
i,2

Fi,1 Fi,2 �P

2
64

3
75 , 0 (46)

where Fi,1 and Fi,2 are defined by

Fi,1 ¼ PYXþ
1 Ai þ ZX?

1 Ai þKiC

Fi,2 ¼ PYXþ
1 Di þ ZX?

1 Di þKiG

Proof: The proof follows the lines of the proof of Theorem
2 with a Schur complement and is therefore omitted. A

Finally the design of UIAO for continuous-time (resp.
discrete-time) TSDS is reduced to the following procedure.

Step 1. Verify the existence condition (41).
Step 2. Solve the LMI (42) [resp. (46)] in P, Z and Ki.
Step 3. Compute Z and Ki with Z ¼ P�1Z and Ki ¼ P�1Ki,
respectively. The matrices T1 and T2 are obtained by (43)
and (44). The matrices Ni, Mi and Li are derived from
(19), (23) and (24), respectively.

5 Design of unknown input decoupling and
attenuating observer

If the UIs are too numerous or if their distribution structure
makes the perfect UI decoupling of the estimation imposs-
ible [i.e. if the structural condition (9) is not satisfied] a
compromise can be made in order to design an observer
ensuring two complementary objectives with less restrictive
existence conditions. Firstly, the state estimation is per-
fectly decoupled to a subset of the UI denoted d(t).
Secondly, the L2-gain between the other UIs, denoted
�d(t), to the state estimation error is minimised, thus the
state estimation is made maximally robust to these UI.
Partitioning the UI into d(t) and �d(t) the system (1 and 2)
can be written as

E_x(t) ¼
Xr
i¼1

hi(w(t))(Aix(t) þ Biu(t)

þ Did(t) þ Did(t)) (47)

y(t) ¼ Cx(t) þGd(t) þGd(t) (48)

where d(t) [ Rq and d(t) [ Rq. The partition of the UI into
d(t) and �d(t) is such that the perfect decoupling condition is
satisfied for (E, C, G, D1, . . . , Dr), then the L2-gain from
d(t) to the state estimation error is minimised.
IET Control Theory Appl., Vol. 1, No. 5, September 2007
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The designs of UIDO and UIAO are combined to derive
the design of a UI decoupling/attenuating observer
(UIDAO). The sufficient existence conditions are given in
the following theorem.

Theorem 3: There exists an observer (5 and 6) ensuring
perfect decoupling to d(t) and maximally robust to d(t) if
condition (49) is satisfied and if there exist a symmetric
positive definite matrix P [ Rn�n and a matrix
Z [ Rn�(nþ(rþ1)m) solution of the minimisation of g under
the LMI constraint (50) for i ¼ 1, . . . , r.

rank X ¼ nþ rank ¼ [G G] þ rank
D1 � � � Dr

Ir �G

� �
(49)

Ci,1 Ci,2

C
T

i,2 �g2I

" #
, 0 (50)

where Ci,1 and Ci,2 are given by

Ci,1 ¼ PYX
þ
Yi þ ZX

?
Yi

þ (YX
þ
Yi)

TPþ (X
?
Yi)

TZ
T
þ In

Ci,2 ¼ PYX
þ
Yi þ ZX

?
Yi

where X
þ

is the pseudo-inverse of X, X
?
¼ I� XXþ, and

where X, Y, Yi and Yi are given by

X ¼

E 0n�q 0n��q

C G G

0rm�n 0rm�q 0rm��q

�������
D1 � � � Dr

0m�q � � � 0m�q

Ir �G

2
64

3
75

Y ¼ [In 0n�qþqj0n�rq]

Yi ¼

Ai

0m�n

ei � C

2
64

3
75, Yi ¼

Di

0m�q

ei �G

2
64

3
75

Proof: The state estimation error e(t) is governed by the
following system

_e(t) ¼
Xr
i¼1

hi(w(t))(Nie(t) þ (T1Ai � NiT1E� LiC)x(t)

þ (T1Bi �Mi)u(t) þ (T1Di � LiG)d(t)

þ (T1Di � LiG)d(t) þ T2G
_d(t) þ T2G

_d(t)) (52)

Following a similar argument to that in the proof of
Theorem 1, if the observer parameters satisfy the constraints
(19–24) and T2G ¼ 0, e(t) is governed by

_e(t) ¼
Xr
i¼1

hi(w(t))(Nie(t) þ (T1Di þKiG)d(t)) (53)

These constraints can be written as QX ¼ Y, with Q
defined by (27). This equation can be solved if and only if
rank[X

T
Y

T ]T
¼ rank X, which is equivalent to the

condition (49). If condition (49) is satisfied, then, for any
arbitrary matrix Z, u is given by

Q ¼ YX
þ
þ ZX

?
(54)

Then, the only parameter to be found is the matrix Z. Since
the matrices Ni and (T1Di � LiG) can be written as

Ni ¼ QYi ¼ YX
þ
Yi þ ZX

?
Yi
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T1Di þKiG ¼ QYi ¼ YX
þ
Yi þ ZX

?
Yi

the stability condition of (53) follows the same lines as in
the proof of Theorem 2. Rewriting the stability condition
(39) for the triplet (Ni, (T1Di �KiG), In), and setting
PZ ¼ Z, the LMI condition (50) follows. A

Remark 3: Obviously, condition (49) is less restrictive than
(9). To obtain perfect decoupling to all the UI of (47 and
48), Di and G should be replaced by [Di Di ] and
[G G ], respectively, in (49) and (51), which would lead
to a more restrictive existence condition.

A similar result can be given for discrete-time systems
defined by

Exkþ1 ¼
Xr
i¼1

hi(wk) Aixk þ Biuk þ Didk þ Didk
� �

(55)

yk ¼ Cxk þGdk þGdk (56)

Corollary 3: There exists an observer (7 and 8) ensuring
perfect decoupling to dk and maximally robust to dk if con-
dition (49) is satisfied and if there exist a symmetric positive
definite matrix P [ Rn�n and a matrix Z [ Rn�(nþ(rþ1)m)

solution to the minimisation of g under the following LMI
constraint for i ¼ 1, . . . , r.

In � P 0 FT
i,1

0 �g2I FT
i,2

Fi,1 Fi,2 �P

2
64

3
75 , 0 (57)

where Fi,1 and Fi,2 are given by

Fi,1 ¼ PYX
þ
Yi þ ZX

?
Yi

Fi,2 ¼ PYX
þ
Yi þ ZX

?
Yi

Proof: The proof follows the lines of the proof of Corollary
3 and Theorem 3, and is therefore omitted. A

Finally the design of the observer for continuous-time
(resp. discrete-time) TSDS is reduced to the following
procedure.

Step 1. Verify the existence condition (49).
Step 2. Solve the LMI (50) [resp. (57)] in P and Z.
Step 3. Compute Z with Z ¼ P�1Z. For a given Z, Q is
given by (54), then the matrices T1, T2 and Ki are obtained.
The matrices Ni, Mi and Li are derived from (19), (23) and
(24), respectively.

6 Application to fault diagnosis

In this section, the UI decoupling and attenuating observers
are used to perform fault diagnosis. Consider a continuous-
time TSDS affected by faults f (t) [ Rq and disturbances
w(t) [ Rq defined by

E_x(t) ¼
Xr
i¼1

hi(w(t))(Aix(t) þ Biu(t)

þ Dfi f (t) þ Dwiw(t))

y(t) ¼ Cx(t) þGf f (t) þGww(t)

In the discrete-time case, the TSDS affected by faults
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f k [ Rq and disturbances wk [ Rq is defined by

Exkþ1 ¼
Xr
i¼1

hi(wk)(Aixk þ Biuk þ Dfi f k þ Dwiwk)

yk ¼ Cxk þGf f k þGwwk

It is assumed that each component of the disturbance vector
is bounded, and that the value of this bound is known :
jwi(t)j , ni (resp jwik j , ni in the discrete-time case) for
i ¼ 1, . . . , q) for all t resp. for all k). The well-known
GOS [11] can be applied to propose a method for the
fault diagnosis of TSDS. In this approach, q UIDAO
are designed. The ‘th UIDAO is designed by considering
the ‘th fault as a UI. A subset, denoted S‘, of the disturb-
ances can also be considered as UI provided the existence
condition (49) is satisfied. In other words, the ‘th observer
is designed for the system (47 and 48) [resp. (55 and 56)],
with

Di ¼ D‘
fijD

j
wi, j [ S‘

h i
, Di ¼ D

j
wi, j [ S‘

� �
G ¼ G‘

f jG
j
w, j [ S‘

h i
, G ¼ Gj

w, j [ S‘

� �
where M‘ denotes the ‘th column of the matrix M, and S‘
denotes the complementary to S‘ in {1,2, . . . , q}.

As a consequence, the output estimation of the ‘th obser-
ver will be sensitive to all the faults but the ‘th, insensitive
to the ‘th fault and to a subset of the disturbances, denoted
S‘, and maximally robust to the other disturbances belong-
ing to the subset �S‘. The subsets of the UI are determined so
that the decoupling condition (49) is satisfied for all the dis-
turbances in S‘ and so that the L2-gain from the disturb-
ances in �S‘ to the output estimation error is minimised. In
other words, the output estimation error is a residual
signal. A classical method for observer-based fault diagno-
sis is to suppose the occurrence of the ‘th fault if all residual
signals, except the ‘th, are significantly different from zero.
The problem is then to quantify the term significantly. In
order to discriminate between the influence of the disturb-
ances and the ‘th fault, one can compute the L2-gain from
the disturbances to each output estimation error, as
described in the following procedure.

† For each fault f‘(t) (resp. f‘k in the discrete-time case)
Design the UIDAO, sensitive to all faults except f ‘(t) (resp.
f ‘k), insensitive to wi(t) (resp. wik) i [ S‘ and maximally
robust to wi(t) (resp. wik), i [ S‘.
† Compute the norm-bound of the attenuated disturbances,
denoted r‘

r‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
i[S‘

n2
i

s

† For each component of the output yj(t) (resp. yjk), compute
the L2-gain, denoted g‘j, from the attenuated disturbances
{wi(t)ji [ S‘} (resp. {wikji [ S‘}) to the jth output esti-
mation error and compute the boolean vector b‘(t) ¼ [ b‘1(t)
b‘2(t) � � � b‘m(t)] (resp. b‘k ¼ [b‘1k b‘2k � � � b‘mk ]),
where b‘j(t) (resp. b‘jk) is defined by

b‘j(t)¼
1, if jŷ‘j(t)� yj(t)j.ag‘jr‘

0, else

	

b‘jk ¼
1, if jŷ‘jk�yjkj.ag‘jr‘

0, else

	

where ŷ‘j(t) (resp. ŷ‘jk) is the jth component of the estimated
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output given by the ‘th observer. The positive scalar a allows
the designer to handle the compromise between non-detection
and false alarm (e.g. considering the accuracy of the model).
† Compute the alarm a‘(t) (resp. a‘k), affected to f ‘(t)
(resp. f ‘k), defined in the continuous-time case by

a‘(t) ¼
1, if (bi(t)b

T
i (t) � 1, 8i = ‘)

& (b‘(t)b
T
‘ (t) ¼ 0)

0, else

8<
:

or in the discrete-time case by

a‘k ¼
1, if (bikb

T
ik � 1, 8i = ‘) & (b‘kb

T
‘k ¼ 0)

0, else

	

This approach can be conservative, since the only avail-
able information about the disturbances is their amplitude
bound and the L2-gain of their influence onto the output
estimation error, thus it may imply non-detection. This
effect can be limited by the use of the parameter a, which
can be adjusted according to measurements of the system
under healthy operation. Nevertheless, comparing each
component of the estimation error with a threshold makes
it possible to avoid distributing a significant error affecting
a component on all the various components, and then
reduces the non-detection.

One should note that the GOS is an efficient structure of
diagnosis in order to detect and isolate single faults. In the
case of simultaneous faults, two faults may cause non-zerol
residue responses in all observers. In this case, the dedicated
observer scheme can be considered as an alternative, but the
decoupling conditions become much more restrictive since
all the fault inputs, but the ‘th have to be decoupled from the
‘th residue. This scheme is not detailed here, but can readily
be applied since it suffices to change the definition of the
matrices Di, Di, G and G: the ‘th observer should be
designed for the system (47 and 48) [resp. (55 and 56)], with

Di ¼ D1
fi � � � D‘�1

fi D‘þ1
fi � � � D

q
fij D

j
wi, j [ S‘

h i

G ¼ G1
fi � � � G‘�1

fi G‘þ1
fi � � � G

q
fij Gj

w, j [ S‘e
h i

Di ¼ D
j
wi, j [ S‘

� �
, G ¼ Gj

w, j [ S‘

� �

7 Design example

In this section, the proposed approach for fault diagnosis is
illustrated. Consider a discrete-time TSDS defined by

Exkþ1 ¼
X2

i¼1

hi(wk)(Aixk þ Biuk þ Dfi f k þ Dwiwk)

yk ¼ Cxk

with E ¼ diag 1 1 1 0 and

A1 ¼

�0:5 �0:5 0:2 0:2

�0:9 0:1 0:4 0:7

�0:2 �0:7 0 0

�0:2 �0:4 0:4 0

0
BBB@

1
CCCA,
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B1 ¼ Df 1 ¼

5 0

0 0

0 4

0 0

0
BBB@

1
CCCA

A2 ¼

0:1 �0:2 0:4 0:9
�0:2 0:6 �0:2 �0:7
0:5 �0:7 �0:7 0:6
�0:7 0:4 0:4 3:6

0
BB@

1
CCA,

B2 ¼ Df 2 ¼

6 0

0 0

0 3

0 0

0
BB@

1
CCA Dw1 ¼

0 0

0:8 0

0 0

1 0

0
BB@

1
CCA,

Dw2 ¼

0 0

1 0

0 0:1
1 0

0
BB@

1
CCA C ¼

1 1 �1 0

0 1 0 1


 �

One can notice that the subsystem (E, A1) is impulsive. The
finite spectrum of the two subsystems is significantly differ-
ent since we have sf (E, A1) ¼ {�0:080, �0:564} and
sf (E, A2) ¼ {�0:935, 0:126, 0:996}, thus the global
system is not close to a linear system. The sampling time
is ts ¼ 0.03 s. The activating functions hi(wk) are defined
by h1k ¼ (1 þ tanh(u1k=10))=2 and h2k ¼ 1 � h1k . The dis-
turbances w1k and w2k are bounded centred white noise,
with norm bound n1 ¼ n2 ¼ 1. The fault signals represent
control input dysfunctions and they are defined by

f1k ¼
�0:8 u1k , if 35 � tk � 40

0, else

	

f2k ¼
�0:8 u2k , if 40 � tk � 45

0, else

	

The first UIADO is designed with the first control input as
UI, the L2-gain from w to the first and second output
estimation error are g11 ¼ 0:098 and g12 ¼ 0:050, respect-
ively. The second UIADO is designed with the second
control input and the second disturbance as UI,
the L2-gain from w1 to the first and second output
estimation error are g21 ¼ 0:052 and g22 ¼ 0:009,
respectively.

Fig. 1 Inputs and activating functions of the simulated system
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In Fig. 1, the inputs and the activating functions are dis-
played. Figs. 2 and 3 display the comparison of the state
variables and their estimates supplied by the UIDAO
insensitive to the first fault. The fault f1k appearing
between tk ¼ 35 s and tk ¼ 40 s does not affect the

Fig. 2 Original and estimated x1k and x2k obtained with an
observer decoupling the first input

Fig. 3 Original and estimated x3k and x4k obtained with an
observer decoupling the first input

Fig. 4 Original and estimated x1k and x2k obtained with an
observer decoupling the second input
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estimation, whereas the estimation is sensitive to the
fault f2k present between tk ¼ 40 s and tk ¼ 45 s. Figs. 4
and 5 display the comparison of the state variables and
their estimates supplied by the UIDAO insensitive to the
fault f2k and affected by f1k. The residual signals and

Fig. 5 Original and estimated x3k and x4k obtained with an
observer decoupling the second input

Fig. 6 Output estimation errors obtained with an observer
decoupling the first input

Fig. 7 Output estimation errors obtained with an observer
decoupling the second input
IET Control Theory Appl., Vol. 1, No. 5, September 2007
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their corresponding threshold, for a ¼ 1, are displayed in
Figs. 6 and 7.

The residual signals computed with the output estimation
error of the first observer are sensitive to f2k and insensitive
to f1k whereas the residual signals computed with second
UIADO are sensitive to f1 and insensitive to f2. The
L2-gains g11, g12, g21 and g22 are good thresholds for
fault isolation, with a ¼ 1, since the fault f2k (occurring
for 40 � tk � 45) is isolated at t ¼ 41.5 s, and the fault f1k
(occurring for 35 � tk � 40) is isolated at t ¼ 35.1 s.
The sudden appearance or disappearance of a fault may
cause abrupt changes of the state variables that the estimate
cannot follow instantaneously. Thus, even if the estimation
is decoupled from the occurring fault, a residual signal may
transiently be higher than the threshold. This phenomenon
appears in Fig. 7 at t ¼ 45 when f2k disappears and causes
a brief overshot of the output estimation error.

8 Conclusion

In this paper, a simple method is proposed to design UIO for
TSDS. Sufficient existence conditions were given, and the
determination of the observer parameters is based on
solving a system of strict LMI. If the unknown input decou-
pling condition is not satisfied, it has been proposed to
design an L2-observer in order to minimise the L2-gain
from the UI to the estimated state. A compromise
between perfect unknown input decoupling and unknown
input attenuation can be made to design observer ensuring
perfect decoupling face to a subset of the unknown inputs,
and robustness face to the other unknown inputs. The
three observer designs are treated in both continuous and
discrete-time cases. The proposed observers are used to
perform fault diagnosis. Designing a bank of observers,
where each observer considers a fault as a UI, the GOS
can be extended to TSDS.
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