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Abstract— This paper presents a sum of squares (SOS) ap-
proach for modeling and control of nonlinear dynamical systems
using polynomial fuzzy systems. The proposed SOS-based frame-
work provides a number of innovations and improvements over
the existing LMI-based approaches to Takagi-Sugeno fuzzy model
and control. First, we propose a polynomial fuzzy modeling and
control framework that is more general and effective than the
well-known Takagi-Sugeno fuzzy model and control. Secondly, we
obtain stability and stabilizability conditions of the polynomial
fuzzy systems based on polynomial Lyapunov functions that
contain quadratic Lyapunov functions as a special case. Hence,
the stability and stabilizability conditions presented in this paper
are more general and relaxed than those of the existing LMI-
based approaches to Takagi-Sugeno fuzzy model and control.
Moreover, the derived stability and stabilizability conditions are
represented in terms of SOS and can be numerically (partially
symbolically) solved via the recently developed SOSTOOLS. To
illustrate the validity and applicability of the proposed approach,
a number of analysis and design examples are provided. The
first example shows that the SOS approach renders more relaxed
stability results than those of both the LMI-based approaches and
a polynomial system approach. The second example presents an
extensive application of the SOS approach in comparison with
a piecewise Lyapunov function approach. The last example is a
design exercise that demonstrates the viability of the SOS-based
approach to synthesize a stabilizing controller.

Index Terms— polynomial fuzzy system, sum of squares, poly-
nomial Lyapunov function, polynomial fuzzy controller, stability,
stabilizability.

I. INTRODUCTION

THE history of Takagi-Sugeno (T-S) fuzzy model based
control goes back more than two decades. The idea began

in 1985, when Takagi and Sugeno published their seminal
work [1] introducing a new type of fuzzy model representation.
In the beginning of 1990’s, the issue of stability [2]-[6] for
T-S fuzzy control systems has been investigated extensively
within the framework of nonlinear system stability. Today,
there exists a large body of literature (e.g., [7]-[20]) on stability
analysis and design of T-S fuzzy control systems. In particular,
there has been a flurry of research activities on linear matrix
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inequality (LMI) (e.g.,[21]-[31]) based approaches. These re-
sults range from elegant stable, optimal or robust control to
more recent advanced nonlinear control paradigms. In LMI-
based design approaches, a numerical solution is obtained by
convex optimization methods such as interior point method.
Though LMI-based approaches have enjoyed great success and
popularity, there still exists a large number of design problems
that either can not be represented in terms of LMIs or the
results obtained through LMIs are too conservative. In this
paper, we seek to provide a post-LMI framework for fuzzy
modeling and control of nonlinear systems. In other words,
we formulate and solve a class of polynomial design problems
that can not be represented in terms of LMIs, i.e., that can not
be solved by convex optimization methods.

Specifically, this paper presents a sum of squares (SOS)
approach for modeling and control of nonlinear systems using
polynomial fuzzy systems. The proposed SOS-based approach
provides two innovative extensions over the existing LMI-
based approaches to Takagi-Sugeno fuzzy model and control.
First, we propose a polynomial fuzzy modeling and control
framework that is a generalization of the Takagi-Sugeno fuzzy
model and is more effective in representing nonlinear control
systems. Secondly, the stability and stabilizability conditions
of the fuzzy polynomial systems are derived based on poly-
nomial Lyapunov functions that contain quadratic Lyapunov
functions as a special case. Hence, the stability and stabiliz-
ability conditions obtained in this paper are more general and
relaxed than those based on the existing LMI-based approaches
to Takagi-Sugeno fuzzy model and control. Central to the
problem of stability analysis and control design, the derived
stability and stabilizability conditions are represented in terms
of SOS and can be numerically (partially symbolically) solved
via the recently developed SOSTOOLS [34]. These SOS
conditions can not be generally solved via convex optimization
methods. To the best of our knowledge, this paper represents
the first attempt to apply SOS techniques to fuzzy control
systems.

SOSTOOLS [34] is a free, third party MATLAB1 tool-
box for solving sum of squares problems. The techniques
behind it are based on the sum of squares decomposition for
multivariate polynomials, which can be efficiently computed
using semidefinite programming. SOSTOOLS is developed as
a consequence of the recent interest in sum of squares poly-

1A registered trademark of MathWorks, Inc.
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nomials, partly due to the fact that these techniques provide
convex relaxations for many hard problems such as global,
constrained, and boolean optimization. For more details, please
refer to the manual of SOSTOOLS [34].

The rest of the paper is organized as follows. Section II
recalls the Takagi-Sugeno fuzzy model and associated stability
results. Section III introduces a polynomial fuzzy model
and a polynomial Lyapunov function to facilitate SOS-based
techniques for analysis and design of fuzzy control systems.
Sections IV and V present stability analysis via SOS and two
modeling and analysis examples, respectively. The first exam-
ple shows that our approach provides more relaxed stability
results than those of both the existing LMI approaches and a
polynomial system approach. The second example carries out
an extensive application of the SOS approach in comparison
with a piecewise Lyapunov function approach [35]. Section VI
introduces new types of polynomial-based fuzzy controller and
presents a stable control design based on polynomial Lyapunov
functions. Section VII entails a design example to demonstrate
the viability of our SOS design approach. It is followed by
concluding remarks.

II. TAKAGI-SUGENO FUZZY MODEL AND QUADRATIC

LYAPUNOV FUNCTION-BASED STABILITY ANALYSIS

The fuzzy model-based control methodology [21] provides
a natural, simple and effective design approach to complement
other nonlinear control techniques (e.g., [32]) that require
special and rather involved knowledge. Moreover, there is
no loss of generality in adopting the T-S fuzzy model based
control design framework as it has been established that any
smooth nonlinear control systems can be approximated by the
T-S fuzzy models (with liner model consequence) [33].

In this section, we recall the Takagi-Sugeno fuzzy model
and its associated stability analysis based on quadratic Lya-
punov functions [21]. The Takagi-Sugeno fuzzy model is
described by fuzzy IF-THEN rules which represent local linear
input-output relations of a nonlinear system. The main feature
of this model is to express the local dynamics of each fuzzy
implication (rule) by a linear system model. The overall fuzzy
model of the system is achieved by fuzzy blending of the linear
system models.

Consider the following nonlinear system:

ẋ(t) = f(x(t),u(t)), (1)

where f is a nonlinear function. x(t) =
[x1(t) x2(t) · · · xn(t)]T is the state vector and
u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector.
Based on the sector nonlinearity concept [21], we can exactly
represent (1) with the following Takagi-Sugeno fuzzy model
(globally or at least semi-globally).

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then ẋ(t) = Aix(t) + Biu(t) i = 1, 2, · · · , r, (2)

where zj(t) (j = 1, 2, · · · , p) is the premise variable. The
membership function associated with the ith Model Rule and

jth premise variable component is denoted by Mij . r denotes
the number of Model Rules. Each zj(t) is a measurable
time-varying quantity that may be states, measurable external
variables and/or time. The defuzzification process of the model
(2) can be represented as

ẋ(t) =

r∑
i=1

wi(z(t)){Aix(t) + Biu(t)}
r∑

i=1

wi(z(t))

=
r∑

i=1

hi(z(t)){Aix(t) + Biu(t)}, (3)

where
z(t) = [z1(t) · · · zp(t)]

and

wi(z(t)) =
p∏

j=1

Mij(zj(t)).

It should be noted from the properties of membership functions
that the following relations hold.

r∑
i=1

wi(z(t)) > 0, wi(z(t)) ≥ 0 i = 1, 2, · · · , r

Hence,

hi(z(t)) =
wi(z(t))

r∑
i=1

wi(z(t))

≥ 0,
r∑

i=1

hi(z(t)) = 1.

By employing the quadratic Lyapunov function
xT (t)Px(t), stability conditions of the open-loop system (3)
with u(t) = 0 are obtained as

P > 0, (4)

−AT
i P − PAi > 0. (5)

The conditions (4) and (5) are represented in terms of LMIs.
Thus, the stability conditions can be efficiently solved numer-
ically by interior point algorithms.

III. POLYNOMIAL FUZZY MODEL AND POLYNOMIAL

LYAPUNOV FUNCTION

Section II summarized Takagi-Sugeno fuzzy model and
stability analysis based on quadratic Lyapunov functions. In
this section, we will introduce a new type of fuzzy model
with polynomial rule consequence, i.e., a fuzzy model whose
consequent parts are represented by polynomials.

As shown in Section II, the stability conditions (4) and (5)
for the T-S fuzzy system and the quadratic Lyapunov function
reduce to LMIs. As a result, the stability conditions can be
efficiently solved numerically by interior point algorithms such
as the LMI toolbox of MATLAB. In this paper, we will
show that the stability conditions for polynomial fuzzy systems
based on polynomial Lyapunov functions can be reduced to
SOS problems. Therefore, instead of the LMI toolbox, these
problems can be solved via SOSTOOLS [34].
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A. Polynomial fuzzy model

Using the sector nonlinearity concept, we introduce a so-
called polynomial fuzzy model to exactly represent (1). The
main difference between (2) and a polynomial fuzzy model
lies in the consequent part representation. The fuzzy model of
(2) features linear model consequence, whereas the proposed
polynomial fuzzy model has polynomial model consequence
as shown below.

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then ẋ(t) = Ai(x(t))x̂(x(t)) + Bi(x(t))u(t)
i = 1, 2, · · · , r, (6)

where Ai(x(t)) and Bi(x(t)) are polynomial matrices in
x(t). x̂(x(t)) is a column vector whose entries are all mono-
mials in x(t). That is, x̂(x(t)) ∈ RN is an N × 1 vector of
monomials in x(t). A monomial in x(t) is a function of the
form xα1

1 xα2
2 · · · xαn

n , where α1, α2, · · ·, αn are nonnegative
integers. Therefore, Ai(x(t))x̂(x(t)) + Bi(x(t))u(t) is a
polynomial vector. Thus, the polynomial fuzzy model (6) has
a polynomial in each consequent part. We assume that

x̂(x(t)) = 0 iff x(t) = 0
throughout this paper.

The defuzzification process of the model (6) can be repre-
sented as

ẋ(t) =

r∑
i=1

wi(z(t)){Ai(x(t))x̂(x(t)) + Bi(x(t))u(t)}
r∑

i=1

wi(z(t))

=
r∑

i=1

hi(z(t)){Ai(x(t))x̂(x(t)) + Bi(x(t))u(t)}.

(7)

Thus, the overall fuzzy model is achieved by fuzzy blending
of the polynomial system models.

If x̂(x(t)) = x(t) and Ai(x(t)) and Bi(x(t)) are constant
matrices for all i, then Ai(x(t))x̂(x(t)) + Bi(x(t))u(t)
reduces to Aix(t) + Biu(t), that is, then (7) reduces to (3).
Therefore, (7) is a more general representation.

Remark 1: As shown in Section III-C and Section V, the
number of rules in a polynomial fuzzy model is generally
fewer than that in a T-S fuzzy model. Furthermore, the
proposed SOS approach to polynomial fuzzy models provides
significantly more relaxed stability results than the existing
LMI approaches to T-S fuzzy models.

B. Polynomial Lyapunov function

To obtain more relaxed stability results, we employ a
polynomial Lyapunov function represented by

x̂T (x(t))P (x(t))x̂(x(t)), (8)

where P (x(t)) is a polynomial matrix in x(t). If x̂(x(t)) =
x(t) and P (x(t)) is a constant matrix, then (8) reduces to the
quadratic Lyapunov function xT (t)Px(t). Therefore, (8) is a
more general representation.

C. Nonlinear Modeling Example

Consider the following nonlinear system

ẋ1(t) = x�
2(t),

ẋ2(t) = −2x1(t) − x2(t) − g(t)x1(t),
(9)

where g(t) ∈ [0, k] for all t. � is a positive integer. Without
loss of generality, assume that � = 2 in this example. For other
positive integer values of �, we can construct a fuzzy model
in the same way as below.

First, we construct a T-S fuzzy model to represent the
system. To begin with, we assume that x2(t) ∈ [−d, d] for all
t where d > 0. Note that we can always choose a sufficiently
large d to cover the nonlocal dynamics. Using the concept of
sector nonlinearity, we arrive at the following T-S fuzzy model
that can exactly represent the dynamics under x2(t) ∈ [−d, d]
and g(t) ∈ [0, k] for all t.

ẋ(t) =
4∑

i=1

hi(z(t))Aix(t), (10)

where x(t) = [x1(t) x2(t)]T and z(t) = [g(t) x2(t)]T

A1 =
[

0 −d
−2 −1

]
, A2 =

[
0 −d

−2 − k −1

]
,

A3 =
[

0 d
−2 −1

]
, A4 =

[
0 d

−2 − k −1

]
.

The membership functions are obtained as

h1(z(t)) =
k − g(t)

k
· (−x2(t) − d

2d
),

h2(z(t)) =
g(t)
k

· (−x2(t) − d

2d
),

h3(z(t)) =
k − g(t)

k
· x2(t) + d

2d
,

h4(z(t)) =
g(t)
k

· x2(t) + d

2d
.

As a comparison, we proceed to derive the following
polynomial fuzzy model that can also exactly represent the
dynamics under g(t) ∈ [0, k] for all t.

ẋ(t) =
2∑

i=1

hi(z(t))Aix(t), (11)

where z(t) = g(t) and

A1(x) =
[

0 x2

−2 −1

]
, A2(x) =

[
0 x2

−2 − k −1

]
.

The membership functions are obtained as

h1(z(t)) =
k − g(t)

k
, h2(z(t)) =

g(t)
k

.

Note that the assumption of x2(t) ∈ [−d, d] for all t is not
needed in the construction of the polynomial fuzzy models.
Note also the number of rules for the polynomial fuzzy model
is less than that of the T-S fuzzy model.
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IV. STABILITY ANALYSIS VIA SOS

A. Sum of Squares

The computational method used in this paper relies on the
sum of squares decomposition of multivariate polynomials.
A multivariate polynomial f(x(t)) (where x(t) ∈ Rn) is a
sum of squares (SOS) if there exist polynomials f1(x(t)), · · ·,
fm(x(t)) such that f(x(t)) =

∑m
i=1 f2

i (x(t)). It is clear that
f(x(t)) being an SOS naturally implies f(x(t)) > 0 for all
x(t) ∈ Rn. This can be shown equivalent to the existence of a
special quadric form stated in the following proposition [36].

Proposition 1: [37] Let f(x(t)) be a polynomial in x(t) ∈
Rn of degree 2d. In addition, let x̂(x(t)) be a column vector
whose entries are all monomials in x(t) with degree no greater
than d. Then f(x(t)) is a sum of squares iff there exists a
positive semidefinite matrix P such that

f(x(t)) = x̂T (x(t))Px̂(x(t)). (12)

Expressing an SOS polynomial using a quadratic form as in
(12) has also been referred to as the Gram matrix method.

Recall that a monomial in x(t) is a function of the form
xα1

1 xα2
2 · · ·xαn

n , where α1, α2, · · ·, αn are nonnegative inte-
gers. In this case, the degree of the monomial is given by
α1 + α1 + · · · + αn.

A sum of squares decomposition for f(x(t)) can be com-
puted using semidefinite programming, since it amounts to
searching for an element P in the intersection of the cone
of positive semidefinite matrices and a set defined by some
affine constraints that arise from (12). Note in particular that
the polynomial f(x(t)) is globally nonnegative if it can be
decomposed as a sum of squares. Hence the sum of squares
decomposition in conjunction with semidefinite programming
provides a polynomial-time computational relaxation for prov-
ing global nonnegativity of multivariate polynomials [37],
[38], which belongs to the class of NP-hard problems. Even
though the sum of squares condition is not necessary for
nonnegativity, numerical experiments seem to indicate that the
gap between sum of squares and nonnegativity is small [36].

B. Stability Conditions

To lighten the notation, in this subsection we drop the
notation with respect to time t. For instance, we will use
x, x̂(x) instead of x(t), x̂(x(t)), respectively. Though the
reference to time t is not explicitly denoted, it should be kept
in mind that x means x(t). Also note that Ak

i (x) denotes the
k-th row of Ai(x).

Theorem 1: The zero equilibrium of the system (7) with
u = 0 is stable if there exists a symmetric polynomial matrix
P (x) ∈ RN×N such that (13) and (14) are satisfied, where
ε1(x) and ε2i(x) are non negative polynomials such that
ε1(x) > 0 for x �= 0 and ε2i(x) ≥ 0 for all x.

x̂T (x)(P (x) − ε1(x)I)x̂(x) is SOS (13)

−x̂T (x)
(
P (x)T (x)Ai(x) + AT

i (x)T T (x)P (x)

+
n∑

k=1

∂P

∂xk
(x)Ak

i (x)x̂(x) + ε2i(x)I
)

x̂(x)

is SOS ∀i, (14)

where T (x) ∈ RN×n is a polynomial matrix whose (i, j)-th
entry is given by

T ij(x) =
∂x̂i

∂xj
(x). (15)

In addition, if (14) holds with ε2i(x) > 0 for x �= 0, then the
zero equilibrium is asymptotically stable. If P (x) is a constant
matrix, then the stability holds globally.

Proof: Consider a candidate of polynomial Lyapunov
function.

V (x) = x̂T (x)P (x)x̂(x), (16)

where P (x) ∈ RN×N is a symmetric polynomial matrix. The
condition (13) implies that P (x) is positive definite for all x,
and V (x) is a positive definite function of x.

The time derivative of V (x) along the open-loop trajectory
(7) with u = 0 is given by

V̇ (x) = x̂T (x)P (x) ˙̂x(x) + ˙̂x
T
(x)P (x)x̂(x)

+x̂T (x)Ṗ (x)x̂(x)

= x̂T (x)P (x)T (x)ẋ(x) + ẋT (x)T T (x)P (x)x̂(x)

+x̂T (x)
( n∑

k=1

∂P

∂xk
(x)ẋk

)
x̂(x). (17)

We have

ẋk =
r∑

i=1

hi(z)Ak
i (x)x̂(x). (18)

From (7), (17) and (18), V̇ (x) becomes

V̇ (x) =
r∑

i=1

hi(z)×

x̂T (x)
{

P (x)T (x)Ai(x) + AT
i (x)T T (x)P (x)

+
n∑

k=1

∂P

∂xk
(x)Ak

i (x)x̂(x)
}

x̂(x).

Therefore, if (14) holds, then V̇ (x) ≤ 0. Furthermore, if (14)
holds with ε2i(x) > 0 for x �= 0, then V̇ (x) < 0 at x �= 0.
Then, the zero equilibrium is asymptotically stable. Finally, if
P (x) is a constant matrix, then V (x) is radially unbounded,
and the stability holds globally.

Remark 2: When Ai(x), Bi(x) and P (x) are constant
matrices and x̂(x) = x, the system representation (7) and the
polynomial Lyapunov function (8) are the same as the Takagi-
Sugeno fuzzy model and the quadratic Lyapunov function used
in a large body of existing literature, e.g., [21]. Thus, the
propsed SOS approach to polynomial fuzzy models contains
the existing LMI approaches to Takagi-Sugeno fuzzy models
as a special case. Therefore, the SOS-based polynomial fuzzy
models provide significantly more relaxed stability results than
the existing LMI approaches to Takagi-Sugeno fuzzy models.
We will see the extent of the relaxation in Section V.
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V. MODELING AND STABILITY ANALYSIS EXAMPLES

This section demonstrates the utility of our proposed ap-
proach through two examples.

A. Example 1

Consider the following nonlinear system:

ẋ1(t) = −(
7
2

+
3
2

sinx1(t))x1(t) − 4x2(t),

(19)

ẋ2(t) = (
19
2

− 21
2

sinx1(t))x1(t) − 2x2(t).

By employing the concept of sector nonlinearity, the dy-
namics of (19) can be exactly converted into the following
Takagi-Sugeno fuzzy model:

Model Rule 1: If x1(t) is h1(x1(t)) then ẋ(t) = A1x(t),
Model Rule 2: If x1(t) is h2(x1(t)) then ẋ(t) = A2x(t),

where

h1(x1(t)) =
1 + sinx1(t)

2
, h2(x1(t)) =

1 − sin x1(t)
2

,

A1 =
[ −5 −4

−1 −2

]
, A2 =

[ −2 −4
20 −2

]
.

No quadratic Lyapunov functions for the above fuzzy model
exists. However, all the trajectories converge to zero as shown
in Figure 1 which depicts the response for the initial condition
x(0) = [0.15 0.15]T . In contrast, our SOS approach can find
polynomial Lyapunov functions of orders six, eight and ten
satisfying (13) and (14) under ε2i(x) > 0 for x �= 0. It is easy
to see that the polynomial Lyapunov functions constructed be-
low are radially unbounded. Therefore, the system is globally
asymptotically stable.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.1

-0.05

0

0.05

0.1

0.15

 time 

 x
1(t

) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.05

0

0.05

0.1

0.15

0.2

 time 

 x
2(t

) 

Fig. 1. Time response.

1) Sixth order polynomial Lyapunov function: The sixth
order polynomial Lyapunov function obtained in our approach
is

V (x) = 1.22x6
1 + 0.586x5

1x2 + 0.855x4
1x

2
2

+0.321x3
1x

3
2 + 0.380x2

1x
4
2

−0.0439x1x
5
2 + 0.0517x6

2. (20)

2) Eighth order polynomial Lyapunov function: The eightth
order polynomial Lyapunov function obtained in our approach
is

V (x) = 2.52x8
1 + 1.39x7

1x2 + 2.61x6
1x

2
2

+1.28x5
1x

3
2 + 1.09x4

1x
4
2

+0.238x3
1x

5
2 + 0.393x2

1x
6
2

−0.0513x1x
7
2 + 0.0378x8

2. (21)

3) Tenth order polynomial Lyapunov function: The tenth
order polynomial Lyapunov function obtained in our approach
is

V (x) = 6.36x10
1 + 3.52x9

1x2 + 8.36x8
1x

2
2

+4.67x7
1x

3
2 + 4.83x6

1x
4
2

+1.84x5
1x

5
2 + 1.58x4

1x
6
2

+0.0795x3
1x

7
2 + 0.480x2

1x
8
2

−0.0693x1x
9
2 + 0.0341x10

2 . (22)

We now compare the proposed SOS approach to a (non-
fuzzy) polynomial system approach. It is known that a non-
polynomial (nonlinear) system can be converted into a poly-
nomial system by a variable transformation. We introduce new
variables x3(t) = sin x1(t) and x4(t) = cos x1(t) − 1. Then,
the time derivative of these new variables are

ẋ3(t) = ẋ1(t) cos x1(t) = ẋ1(t)(1 + x4(t))

= −7
2
x1(t) − 3

2
x1(t)x3(t) − 4x2(t)

−7
2
x1(t)x4(t) − 3

2
x1(t)x3(t)x4(t) − 4x2(t)x4(t),

(23)

ẋ4(t) = −ẋ1(t) sin x1(t) = −ẋ1(t)x3(t)

=
7
2
x1(t)x3(t) +

3
2
x1(t)x2

3(t) + 4x2(t)x3(t). (24)

Hence, the system (19) can be converted into the following
polynomial system.

ẋ1(t) = −7
2
x1(t) − 3

2
x1(t)x3(t) − 4x2(t)

ẋ2(t) =
19
2

x1(t) − 21
2

x1(t)x3(t) − 2x2(t)

ẋ3(t) = −7
2
x1(t) − 3

2
x1(t)x3(t) − 4x2(t)

−7
2
x1(t)x4(t)− 3

2
x1(t)x3(t)x4(t)

−4x2(t)x4(t)

ẋ4(t) =
7
2
x1(t)x3(t) +

3
2
x1(t)x2

3(t) + 4x2(t)x3(t)

For this example, no polynomial Lyapunov functions with
the same structures as in (20), (21) and (22) can be found
using SOSTOOLS. This result shows that our approach can
be superior to the existing (non-fuzzy) polynomial system
approach.

B. Example 2

This example shows comparative results between the pro-
posed polynomial Lyapunov function (8) and a number of
well-know piecewise Lyapunov functions.
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Recall the nonlinear system (9) in Section III-C, for simplic-
ity assume that � = 1. Then, the dynamics can be described
as

ẋ1(t) = x2(t),
ẋ2(t) = −2x1(t) − x2(t) − g(t)x1(t),

(25)

where g(t) ∈ [0, k] for all t.
Similarly as before, we can exactly represent the nonlinear

dynamics with the following fuzzy model

ẋ(t) =
2∑

i=1

hi(z(t))Aix(t), (26)

where z(t) = g(t) and

A1 =
[

0 1
−2 −1

]
, A2 =

[
0 1

−2 − k −1

]
.

The membership functions are obtained as

h1(z(t)) =
k − g(t)

k
, h2(z(t)) =

g(t)
k

.

First the quadratic Lyapunov function approach can guar-
antees the stability for k ≤ 3.82.

The piecewise Lyapunov functions used in this example are

V (x(t)) = max{xT (t)P 1x(t), xT (t)P 2x(t)}
P 1 > 0, P 2 > 0 (27)

and

V (x(t)) = min{xT (t)P 1x(t), xT (t)P 2x(t)}
P 1 > 0, P 2 > 0. (28)

Stability conditions [35] based on (27) and (28) are obtained
for the system (25). The condition based on (27) guarantees the
stability for k ≤ 4.7. The condition based on (28) guarantees
the stability for k ≤ 4.4. Both are improvement over the
quadratic Lyapunov function approach.

We now apply the proposed SOS approach to the system
(26), where analytical results from second order to tenth order
polynomial Lyapunov functions are considered. It can be seen
that higher order polynomial Lyapunov functions achieve more
relaxed stability results.

1) Second order polynomial Lyapunov function: Consider
a second order polynomial Lyapunov function V (x). Note
that it is equivalent to the quadratic Lyapunov function. The
conditions (13) and (14) are feasible. We have the following
Lyapunov function

V (x) = 27.4x2
1 + 6.97x1x2 + 7.02x2

2 (29)

The conditions (13) and (14) guarantee the stability for k ≤
3.82. As expected, the result is same as that of the quadratic
Lyapunov function approach.

2) Fourth order polynomial Lyapunov function: Consider a
fourth order polynomial Lyapunov function V (x). Then, the
conditions (13) and (14) are feasible. We have the following
Lyapunov function

V (x) = 271.0x4
1 + 83.5x3

1x2 + 157.0x2
1x

2
2

+38.7x1x
3
2 + 12.6x4

2 (30)

The conditions (13) and (14) guarantee the stability for
k ≤ 5.73. The result is better than that of the second order
polynomial Lyapunov function and those of the two piecewise
Lyapunov functions.

3) Sixth order polynomial Lyapunov function: Consider a
sixth order polynomial Lyapunov function V (x). Then, the
conditions (13) and (14) are feasible. We have the following
Lyapunov function

V (x) = 2330.0x6
1 + 713.0x5

1x2 + 1920.0x4
1x

2
2

+889.0x3
1x

3
2 + 553.0x2

1x
4
2 + 108.0x1x

5
2

+23.1x6
2 (31)

The conditions (13) and (14) guarantee the stability for k ≤
6.21. The result is better than the fourth order polynomial
Lyapunov function result.

4) Eighth order polynomial Lyapunov function: Consider
an eighth order polynomial Lyapunov function V (x). Then,
the conditions (13) and (14) are feasible. We have the follow-
ing Lyapunov function

V (x) = 3990.0x8
1 + 1580.0x7

1x2

+4680.0x6
1x

2
2 + 2560.0x5

1x
3
2

+1850.0x4
1x

4
2 + 675.0x3

1x
5
2

+284.0x2
1x

6
2 + 49.2x1x

7
2 + 7.44x8

2 (32)

The conditions (13) and (14) guarantee the stability for k ≤
6.39. The result is better than the sixth order polynomial
Lyapunov function result.

5) Tenth order polynomial Lyapunov function: Consider a
tenth order polynomial Lyapunov function V (x). Then, the
conditions (13) and (14) are feasible. We have the following
Lyapunov function

V (x) = 28100.0x10
1 + 10200.0x9

1x2

+40100.0x8
1x

2
2 + 29100.0x7

1x
3
2

+24900.0x6
1x

4
2 + 10400.0x5

1x
5
2

+5630.0x4
1x

6
2 + 1990.0x3

1x
7
2

+609.0x2
1x

8
2 + 89.0x1x

9
2 + 10.4x10

2 (33)

The conditions (13) and (14) guarantee the stability for k ≤
6.64. The result is better than the eighth order polynomial
Lyapunov function result.

Fig. 2 summarizes the comparative results among the
quadratic Lyapunov function approach (kmax = 3.82), the
piecewise Lyapunov function approach (kmax = 4.7) and
our approach. As mentioned above, higher order polynomial
Lyapunov functions achieve more relaxed stability results. In
particular, the tenth order polynomial Lyapunov function result
(kmax = 6.64) is much better than the piecewise Lyapunov
function approach (kmax = 4.7).
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Fig. 2. Comparison results among quadratic Lyapunov function, piecewise
Lyapunov function and polynomial Lyapunov functions.

Fig. 3 shows time transients of the tenth order polynomial
Lyapunov function constructed in our approach, where the
initial states x(0) = [8 0]T and g(t) = kmax

2 (sin 10t + 1).
It can be found from the figure that the time transient of the
polynomial Lyapunov function monotonically decreases.
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Fig. 3. Time transient of tenth order polynomial Lyapunov function (kmax =
6.64).

VI. STABILIZATION VIA SOS

A. Parallel Distributed Compensation and LMI Design Con-
dition

The parallel distributed compensation (PDC) [21] offers a
procedure to design a fuzzy controller from the given Takagi-
Sugeno fuzzy model (2):

Control Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then u(t) = −F ix(t) i = 1, 2, · · · , r (34)

The overall fuzzy controller can be calculated by

u(t) = −
r∑

i=1

hi(z(t))F ix(t). (35)

The well-known LMI conditions [21] for the stability of
the feedback system consisting of (3) and (35) are given as
follows:

X > 0 (36)

−XAT
i − AiX + MT

i BT
i + BiM i > 0 (37)

−XAT
i − AiX − XAT

j − AjX

+MT
j BT

i +BiM j+MT
i BT

j +BjM i ≥ 0 i < j (38)

where M i = F iX.

B. Polynomial Fuzzy Controller

Since the PDC mirrors the structure of the fuzzy model of a
system, a fuzzy controller with polynomial rule consequence
can be constructed from the given polynomial fuzzy model
(6).

Control Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then u(t) = −F i(x(t))x̂(x(t)) i = 1, 2, · · · , r (39)

The overall fuzzy controller can be calculated by

u(t) = −
r∑

i=1

hi(z(t))F i(x(t))x̂(x(t)). (40)

From (7) and (40), the closed-loop system can be represented
as

ẋ(t) =
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t)) ×

{Ai(x(t)) − Bi(x(t))Fj (x(t))}x̂(x(t)). (41)

If x̂(x(t)) = x(t) and Ai(x(t)), Bi(x(t)) and Fj(x(t)) are
constant matrices for all i and j, then (7) and (40) reduce to
(3) and (35), respectively. Therefore, (7) and (40) are more
genral representations.

We provide another important proposition with respect to
the relaxation of polynomial conditions.

Proposition 2: [36] Let F (x(t)) be an N × N symmetric
polynomial matrix of degree 2d in x(t) ∈ Rn. Furthermore, let
x̂(x(t)) be a column vector whose entries are all monomials in
x(t) with degree no greater than d, and consider the following
conditions.

(1) F (x(t)) ≥ 0 for all x(t) ∈ Rn.
(2) vT (t)F (x(t))v(t) is a sum of squares, where v(t) ∈

RN .
(3) There exists a positive semidefinite matrix Q such that

vT (t)F (x(t))v(t) = (v(t)⊗x̂(x(t)))T Q(v⊗x̂(x(t))),
where ⊗ denotes the Kronecker product.

Then (1) ⇐ (2) and (2) ⇐⇒ (3).

The property that (2) ⇒ (1) in Proposition 2 will be utilized
in the proof of Theorem 2.
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C. SOS Design Conditions

This subsection presents stabilizing control design condi-
tions rendered via SOS. The design of a stabilizing polynomial
fuzzy controller is numerically a feasibility problem.

From now on, to lighten the notation, we will drop the
notation with respect to time t as in Section IV-B. For instance,
we will emply x, x̂ instead of x(t), x̂(x(t)), respectively.
Again it should be kept in mind that x means x(t).

Let Ak
i (x) denote the k-th row of Ai(x), K =

{k1, k2, · · · km} denote the row indices of Bi(x) whose
corresponding row is equal to zero, and define x̃ =
(xk1 , xk2 , · · · xkm).

Theorem 2: The control system consisting of (7) and (40)
is stable if there exist a symetric polynomial matrix X(x̃) ∈
RN×N and a polynomial matrix Mi(x) ∈ Rm×N such that
(42) and (43) are staisifed, where ε1(x) and ε2ij(x) are non
negative polynomials such that ε1(x) > 0 for x �= 0 and
ε2ij(x) ≥ 0 for all x.

vT (X(x̃) − ε1(x)I)v is SOS (42)

−vT (T (x)Ai(x)X(x̃) − T (x)Bi(x)Mj(x)

+X(x̃)AT
i (x)T T (x) −MT

j (x)BT
i (x)T T (x)

+T (x)Aj(x)X(x̃) − T (x)Bj(x)Mi(x)

+X(x̃)AT
j (x)T T (x) −MT

i (x)BT
j (x)T T (x)

−
∑
k∈K

∂X

∂xk
(x̃)Ak

i (x)x̂(x)

−
∑
k∈K

∂X

∂xk
(x̃)Ak

j (x)x̂(x) + ε2ij(x)I
)

v

is SOS i ≤ j, (43)

where v ∈ RN is a vector that is independent of x. T (x) ∈
RN×n is a polynomial matrix whose (i, j)-th entry is given
by

T ij(x) =
∂x̂i

∂xj
(x). (44)

In addition, if (43) holds with ε2ij(x) > 0 for x �= 0, then
the zero equilibirium is asymptotically stable. If X(x̃) is a
constant matrix, then the stability holds globally. A stablizing
feedback gain Fi(x) can be obtained from X(x̃) and Mi(x)
as

Fi(x) = Mi(x)X−1(x̃). (45)

Proof: Consider a candidate of Lyapunov function.

V (x) = x̂T (x)X−1(x̃)x̂(x), (46)

where X−1(x̃) ∈ RN×N is a symmetric polynomial matrix.
The condition (42) implies that both X(x̃) and X−1(x̃) are
positive definite for all x, and V (x) is a positive definite
function of x.

The time derivative of V (x) along the closed-loop trajec-
tory (41) is given by

V̇ (x) = x̂T (x)X−1(x̃) ˙̂x(x) + ˙̂x
T
(x)X−1(x̃)x̂(x)

+x̂T (x)Ẋ−1(x̃)x̂(x)

= x̂T (x)X−1(x̃)T (x)ẋ(x)

+ẋT (x)T T (x)X−1(x̃)x̂(x)

+x̂T (x)
( n∑

k=1

∂X−1

∂xk
(x̃)ẋk

)
x̂(x). (47)

Since Bk
i (x) = 0 for k ∈ K, we have

ẋk =
r∑

i=1

hi(z)Ak
i (x)x̂(x) (48)

for k ∈ K. On the other hand,

∂X−1

∂xi
(x̃) = 0 (49)

for i /∈ K. From (41), (48) and (49), V̇ (x) becomes

V̇ (x) =
r∑

i=1

r∑
j=1

hi(z)hj(z)×

x̂T (x)
{

Ωij(x)

+
∑
k∈K

∂X−1

∂xk
(x̃)Ak

i (x)x̂(x)
}

x̂(x)

=
1
2

r∑
i=1

r∑
j=1

hi(z)hj(z)×

x̂T (x)
{

Ωij(x) + Ωji(x)

+
∑
k∈K

∂X−1

∂xk
(x̃)Ak

i (x)x̂(x)

+
∑
k∈K

∂X−1

∂xk
(x̃)Ak

j (x)x̂(x)
}

x̂(x), (50)

where Ωij(x) = X−1(x̃)T (x){Ai(x) − Bi(x)Fj(x)} +
{Ai(x)−Bi(x)Fj(x)}T T T (x)X−1(x̃). The condition (43)
implies that

− (T (x)Ai(x)X(x̃) − T (x)Bi(x)Mj(x)

+X(x̃)AT
i (x)T T (x) − MT

j (x)BT
i (x)T T (x)

+T (x)Aj(x)X(x̃)−T (x)Bj(x)Mi(x)

+X(x̃)AT
j (x)T T (x) − MT

i (x)BT
j (x)T T (x)

−
∑
k∈K

∂X

∂xk
(x̃)Ak

i (x)x̂(x)

−
∑
k∈K

∂X

∂xk
(x̃)Ak

j (x)x̂(x)
)

i ≤ j
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is positive semidefinite for all x. Note that Ak
i (x)x̂(x) is

scalar. Multiplying the last expression from the left and right
by X−1(x̃), we have

−
{

Ωij(x) + Ωji(x)

−
∑
k∈K

X−1(x̃)
∂X

∂xk
(x̃)X−1(x̃)Ak

i (x)x̂(x)

−
∑
k∈K

X−1(x̃)
∂X

∂xk
(x̃)X−1(x̃)Ak

j (x)x̂(x)
}

≥ 0 i ≤ j (51)

for x �= 0.
Next, we rewrite the last two terms in (51). Since X(x̃) is

invertible, we have X−1(x̃)X(x̃) = I. Differentiating both
sides with respect to xk yields

∂X−1

∂xk
(x̃)X(x̃) + X−1(x̃)

∂X

∂xk
(x̃) = 0. (52)

Hence the following relation holds.

X−1(x̃)
∂X

∂xk
(x̃)X−1(x̃) = −∂X−1

∂xk
(x̃) (53)

Define Mi(x) = Fi(x)X(x̃). The inequality (51) can be
reritten by using the relation (53).

−
{

Ωij(x) + Ωji(x)

+
∑
k∈K

∂X−1

∂xk
(x̃)Ak

i (x)x̂(x)

+
∑
k∈K

∂X−1

∂xk
(x̃)Ak

j (x)x̂(x)
}

≥ 0 i ≤ j (54)

for x �= 0. Therefore, if (54) holds, then we have V̇ (x) ≤ 0
from (50). Furthermore, ε2ij(x) > 0 for x �= 0, then V̇ (x) <
0 at x �= 0. Then, the zero equilibrium is asymptotically stable.
Finally, if X(x̃) is a constant matrix, then V (x) is radially
unbounded, and the stability holds globally.

Remark 3: Note that v ∈ RN is a vector that is independent
of x, because L(x(t)) is not always a positive semi-definite
matrix for all x(t) even if xT (x(t))L(x(t))x(x(t)) is an
SOS, where L(x(t)) is a symetric polynomial matrix in
x(t). However, it is guaranteed from Proposition 2 that if
vT L(x(t))v is an SOS, then L(x(t)) ≥ 0 for all x. The
proof of Theorem 2 utilizes this property (i.e., (2) ⇒ (1) in
Proposition 2).

Remark 4: To avoid introducing non-convex condition, we
assume that X(x̃) only depends on states x̃ whose dynamics is
not directly affected by the control input, namely states whose
corresponding rows in Bi(x) are zero. In relation to this, it
may be advantageous to employ an initial state transformation
to introduce as many zero rows as possible in Bi(x).

VII. DESIGN EXAMPLE

To illustrate the viability and validity of the SOS design
approach, this section provides a design example.

Consider the following nonlinear system:

ẋ1 = −x1 + x2
1 + x3

1 + x2
1x2

−x1x
2
2 + x2 + x1u, (55)

ẋ2 = − sinx1 − x2. (56)

Fig. 4 shows the behavior of the nonlinear system with u =
0. The nonlinear system is unstable.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x
1
(t)

x 2(t
)

Fig. 4. Behaviors in x1-x2 plane.

Based on the concept of sector nonlinearity [21], the non-
linear system can be exactly represented by a Takagi-Sugeno
fuzzy model for x1 ∈ [−d1 d1] and x2 ∈ [−d2 d2], where d1

and d2 are constants satisfying 0 < d1 < ∞ and 0 < d2 < ∞.
The Takagi-Sugeno fuzzy model is obtained as

ẋ =
8∑

i=1

hi(z){Aix + Biu}, (57)

where x = [x1 x2]T and z = [x1 x2]T ,

A1 =
[

kmax 1
−1 −1

]
,A2 =

[
kmax 1
−1 −1

]
, (58)

A3 =
[

kmax 1
− sin d1

d1
−1

]
,A4 =

[
kmax 1
− sin d1

d1
−1

]
, (59)

A5 =
[

kmin 1
−1 −1

]
,A6 =

[
kmin 1
−1 −1

]
, (60)

A7 =
[

kmin 1
− sin d1

d1
−1

]
,A8 =

[
kmin 1

− sin d1
d1

−1

]
, (61)

B1 = B3 = B5 = B7 =
[

d1

0

]
, (62)

B2 = B4 = B6 = B8 =
[ −d1

0

]
, (63)

kmin = min
|x1|<d1,|x2|<d2

(−1 + x1 + x2
1 + x1

1x2 − x2
2), (64)

kmax = max
|x1|<d1,|x2|<d2

(−1 + x1 + x2
1 + x1

1x2 − x2
2). (65)
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The membership functions are given as

h1(z) =
k − kmin

kmax − kmin
· sinx1 − sin d1

d1
x1

(1 − sin d1
d1

)x1

· x1 + d1

2d1
, (66)

h2(z) =
k − kmin

kmax − kmin
· sinx1 − sin d1

d1
x1

(1 − sin d1
d1

)x1

· d1 − x1

2d1
, (67)

h3(z) =
k − kmin

kmax − kmin
· x1 − sin x1

(1 − sin d1
d1

)x1

· x1 + d1

2d1
, (68)

h4(z) =
k − kmin

kmax − kmin
· x1 − sin x1

(1 − sin d1
d1

)x1

· d1 − x1

2d1
, (69)

h5(z) =
kmax − k

kmax − kmin
· sinx1 − sin d1

d1
x1

(1 − sin d1
d1

)x1

· x1 + d1

2d1
, (70)

h6(z) =
kmax − k

kmax − kmin
· sinx1 − sin d1

d1
x1

(1 − sin d1
d1

)x1

· d1 − x1

2d1
, (71)

h7(z) =
kmax − k

kmax − kmin
· x1 − sin x1

(1 − sin d1
d1

)x1

· x1 + d1

2d1
, (72)

h8(z) =
kmax − k

kmax − kmin
· x1 − sin x1

(1 − sin d1
d1

)x1

· d1 − x1

2d1
. (73)

Fig. 5 shows the feasible area of the LMI design conditions
(36)-(38) consisting of the Takagi-Sugeno fuzzy model (57)
and the corresponding PDC fuzzy controller [21]. As shown
in Fig. 5, for large d1, the LMI conditions are infeasible. In
addition, the Takagi-Sugeno fuzzy model has eight rules to
represent the nonlinear system. In contrast, we will see below
that the polynomial fuzzy system (that can exactly and globally
represent the nonlinear system) has only two rules.
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Fig. 5. Feasible area of LMI design conditions (36)-(38) for Takagi-Sugeno
fuzzy model (57).

To represent the nonlinear system under consideration, we
have the following polynomial fuzzy system that can exactly
represent the dynamics of the nonlinear system for x1 ∈
(−∞ ∞) and x2 ∈ (−∞ ∞), i.e., globally.

ẋ =
2∑

i=1

hi(z){Ai(x)x̂ + Bi(x)u} (74)

where x = x̂ = [x1 x2] and z = x1,

A1(x) =
[ −1 + x1 + x2

1 + x1x2 − x2
2 1

−1 −1

]
,

A2(x) =
[ −1 + x1 + x2

1 + x1x2 − x2
2 1

0.2172 −1

]
,

B1(x) =
[

x1

0

]
, B2(x) =

[
x1

0

]
.

The menbership functions are given as

h1(z) =
sinx1 + 0.2172x1

1.2172x1
, h2(z) =

x1 − sinx1

1.2172x1
.

The SOS design conditions in Theorems 2 are feasible.
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Fig. 6. Behaviors in x1-x2 plane (with feedback).

Fig.6 shows the control result via the designed stabilizing
controller. The unstable system is stabilized via the SOS
designed controller. In fact, the controller guarantees the global
asymptotic stability of the controlled system.

It can be seen that a main difference between the Takagi-
Sugeno fuzzy model based control and the polynomial fuzzy
model based control is that Ai, Bi and Fi are permitted to be
polynomial matrices in x. In addition, our approach utilizes
a more general Lyapunov function (namely, a polynomial
Lyapunov function). With a more general framework for
both modeling and control, our SOS-based approach indeed
provides more relaxed analysis and design conditions than the
existing LMI approach.

VIII. CONCLUSIONS

This paper has presented a sum of squares (SOS) approach
for modeling and control of nonlinear dynamical systems in
terms of polynomial fuzzy systems. The proposed SOS-based
framework is an attempt to provide a post-LMI framework
for fuzzy modeling and control of nonlinear systems. First,
we have introduced a polynomial fuzzy modeling and control
framework that is more general and effective than the Takagi-
Sugeno fuzzy model and control. Secondly, stability and
stabilizability conditions of the fuzzy polynomial systems have
been obtained based on polynomial Lyapunov functions that
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contain quadratic Lyapunov functions as a special case. The
stability and stabilizability conditions presented in this paper
are more general and relaxed than those of the existing LMI-
based approaches to Takagi-Sugeno fuzzy model and control.
The salient feature of the derived stability and stabilizability
conditions is that they can be represented in terms of SOS and
hence can be numerically (partially symbolically) solved via
the recently developed SOSTOOLS. A number of modeling,
analysis and design examples have been included to illustrate
the validity and applicability of the proposed approach.
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