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Abstract

A direct adaptive controller design using neural network is proposed for an unstable unmanned research aircraft similar in configuration to

combat aircraft. The control law to track the pitch rate command is developed based on system theory. Neural network with linear filters and back

propagation through time learning algorithm is used to approximate the control law. The bounded signal requirement to develop the neural

controller is circumvented using an off-line finite time training scheme, which provides the necessary stability and tracking performances. On-line

learning scheme is implemented to compensate for uncertainties due to variation in aerodynamic coefficients, control surface failures and also

variations in center of gravity position. The performance of the proposed control scheme is validated at different flight conditions. The disturbance

rejection capability of the neural controller is analyzed in the presence of the realistic gust and sensor noises. Hardware-in-loop simulation is also

carried out to study the behavior of control surface deflections in real-time.
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1. Introduction

Conventional flight control systems are designed using the

linearized aircraft models at different equilibrium or trim

conditions and the controller gains are scheduled to provide

good performance in the complete operating flight envelope

[1,2]. However, it is difficult for the gain scheduling technique

to provide the necessary tracking performance under severe

uncertainty and fault conditions. Adaptive nonlinear flight

control schemes offer effective alternatives to overcome this

difficulty. Adaptive control research is directed towards

nonlinear systems with a special class of parametric

uncertainty, which appear linearly with respect to known

nonlinearities. Recently, neural networks have been explored

for modeling and control of nonlinear systems due to their

approximating capabilities and inherent adaptive features.

Also, from a practical perspective, massive parallelism and fast

adaptability of neural network implementations provide more
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incentives for further investigation in problems involving

systems with unknown uncertainties. The feasibility of

applying neural network architectures for nonlinear system

identification and control is first demonstrated through

numerical simulation studies in [3], where the role of the

neural networks is to learn some underlying relationship

between the input–output data and also approximate the

corresponding control law. Since then, a great deal of progress

has been made both in theory and practice of neural network

based nonlinear adaptive control system designs [4–10].

One of the areas to receive wide attention with respect to

adaptive controller based neural network architectures is flight

control system design. Modern day aircraft flight control

systems are designed such that they can accommodate stringent

flying quality requirements, parameter uncertainties, and

component failures. In this context, an adaptive control scheme

based on inversion of a linearized plant model is developed in

[11], where the inversion errors are compensated through multi-

layer perceptron neural networks. The above method is proven to

be effective in many applications including systems operating in

highly nonlinear aerodynamic regime [11], systems with rapidly

varying nonlinear dynamics [12,13] and systems with high levels

of uncertainties [14]. Alternatively, direct adaptive control
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system using model inversion technique based on two neural

networks is presented for control augmentation system of F-18

aircraft in [15]. In this scheme, the first neural network represents

the nominal inverse transformation for feedback linearization,

and the second neural network is used to compensate the

inversion error. This method has been applied to design a control

system in tilt-rotor aircraft [16], and helicopter [17]. In [18,19], it

is shown that neural networks with on-line capabilities can adapt

to changes in aircraft dynamics undergoing highly nonlinear

maneuvers. Use of neural network controller for nonlinear flight

control system is summarized in [20]. Apart from nonlinearities

and uncertainties, restructurable flight control systems for sensor

and actuator failures have also gained attention [21]. Reconfi-

gurable flight control law for tailless aircraft has also been

investigated with offline–online learning strategy [21–24] (the

reader is referred to [6] for a complete survey of adaptive neural

control systems for various applications). The most widely used

flight control scheme based on neural networks is the feedback

error-learning scheme [9–11,18,19]. In this scheme, the control

architecture uses a conventional controller in the inner loop to

stabilize the system dynamics, and the neural controller acts as an

aid to the conventional controller for compensating any

nonlinearities. Under severe modeling uncertainties, fault

conditions and time varying nonlinear dynamics of the plant,

the neural network is adapted on-line to ensure better tracking

ability, provided the conventional controller in the inner loop

satisfies the bounded signal requirements. Since the conventional

controller is not designed for the new conditions, the control

effort required by the feedback error-learning scheme is usually

high when compared to the adaptive neural controllers [25].

Most of the present works on neural network based adaptive

control are on full scale models, though there have been

attempts to design flight control systems for subscale unmanned

air vehicles (UAV) using conventional control approaches.

UAV presents an effective test bed for flight controllers due to

their inherent uncertainties in terms of modeling errors and

center of gravity variations [26–30]. In our recent work [30], an

indirect adaptive neural flight control scheme is developed to

stabilize the unstable unmanned research aircraft (RA) and also

provide necessary tracking performance. In this approach, the

neural identifier and controller approximating the nominal

linear plant and control law are trained off-line for finite time

interval. The off-line trained neural networks are adapted online

to compensate for aerodynamic modeling errors and control

surface failures. However, the performance of neural flight

control scheme depends on the identifier model. Inaccurate

identifier model can cause divergence of the neural controller

network. Also the rate of adaptability of the controller and

identifier networks in on-line learning affects the performance

of the closed-loop system.

The main contribution of the paper is the design of direct

adaptive neural control scheme that circumvents the above

problems. Multilayer perceptron with linear network based

adaptive controller is developed stabilize the unstable

unmanned research aircraft and also track pitch rate command

signal. The neural controller is adapted on-line for aerodynamic

uncertainties, control surface failures and variation in the center
of gravity. In order to assess the performance of the direct

adaptive control scheme, the results are compared with those of

indirect adaptive control scheme and also evaluated using full-

scale six-degree-of-freedom model. Also, in contrast to

previous works that relied on the design of conventional inner

loop controller for unstable systems, the present work uses

finite time training to overcome bounded signal requirement for

neuron-controllers.

It is well known that small-scale aircraft are highly

susceptible to wind gusts and hence difficult to control. While

this aspect is often overlooked in literature, the present work

provides a systematic treatment of gust disturbance specifica-

tions. The disturbance rejection capability of the neural

controller is analyzed in the presence of the realistic gust

and sensor noises. Hardware in loop simulation (HILS) is

carried out with actuator in the loop for the nominal flight

condition to test the deflection limits of actuator and to account

for unmodeled nonlinear dynamics of actuator. The HILS

response is compared with desktop simulation results to assess

the error between the two responses. The results show the

applicability of neural control scheme for practical realization.

This paper is organized as follows. Section 2 deals with the

definition of the problem and describes the neural controller

design procedure. Section 3 is devoted to development of

research aircraft and six-degree-of-freedom model. Section 4

describes the closed-loop system specifications and Section 5

presents the numerical simulation results and hardware-in-loop

simulation. Finally, Section 6 presents the conclusions.

2. Neural controller design

2.1. Problem formulation

Aircraft dynamics is represented in discrete time framework

asX
: xðk þ 1Þ ¼ f ðxðkÞ; uðkÞÞ

yðkÞ ¼ gðxðkÞ; uðkÞÞ (1)

where the functions f:Rn � R! R
n and g:Rn � R � R! R

are smooth and continuous, x is the vector of states, x 2 R
n, u is

the control input to the system, u 2 R, y is the output of the

system, y 2 R, and k is the discrete time variable k 2 @. Without

loss of generality, let us assume that the values of the functions

and the inputs at equilibrium states are f(0, 0) = 0 and g(0, 0) = 0.

The objective here is to find the control input u* such that the

aircraft response y follows the arbitrary bounded reference signal

y* belonging to the set Vy defined by (y* 2 Vy:={y*:jy*j � D2},

where D2 is a real positive number) accurately, i.e., determine the

control input u*(k), 8 k > 0 such that

lim
k!1

jjy�ðkÞ � yðkÞjj! 0 (2)

Let us assume that the linear system is controllable and

observable at all equilibrium points along the reference signal

y* and the derivatives with respect to control input (u) is

nonsingular. It follows from the implicit function theorem [31]

that the control input u*(k) can be expressed in terms of past



Fig. 1. Block diagram of direct adaptive neural control.

Fig. 2. Architecture of neural network.
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inputs and outputs of the system.

u�ðkÞ ¼ Gðuðk � 1Þ; uðk � 2Þ; . . . ; uðk � nÞ; yðk � 1Þ;
yðk � 2Þ; . . . ; yðk � nÞ; y�ðk þ 1ÞÞ (3)

where G is a smooth and continuous function and n is the

number of delays. The desired reference command signal y* for

given pilot stick deflection r is generated using the stable

reference model. The reference model is selected based on

the flying qualities requirements and is expressed in discrete

time framework as

x�ðk þ 1Þ ¼ A�x�ðkÞ þ B�rðkÞ
y�ðkÞ ¼ C�x�ðkÞ (4)

where A*, B*, and C* are the system matrices.

If the reference model given in Eq. (4) is controllable and

observable then the reference signal can be expressed using

nonlinear autoregressive moving average model [3],

y�ðk þ 1Þ ¼ HðrðkÞ; rðk � 1Þ; . . . ; rðk � n1Þ; y�ðk � 1Þ;
y�ðk � 2Þ; . . . ; y�ðk � n1ÞÞ (5)

where the function H is smooth and continuous and n1 is the

number of delays.

By substituting the Eq. (5) in Eq. (3) and assuming that the

aircraft tracks the reference signal accurately, the past control

inputs can be expressed in terms of pilot stick deflections and

aircraft response as

u�ðkÞ ¼ ḠðrðkÞ; rðk � 1Þ; . . . ; rðk � n2Þ; yðk � 1Þ;
yðk � 2Þ; . . . ; yðk � n2ÞÞ (6)

where Ḡ is smooth continuous function and n2 is the number of

delays. The above controller is unique in the neighborhood of

the equilibrium states defined earlier. Note that, the algebraic

relationship given in equation (6) is valid for any bounded

reference signals y* and for any arbitrary values of inputs in the

domain in which the system is controllable and observable [31].

In order to approximate the unknown function Ḡ we present

a direct adaptive neural control scheme with update law based

on deviation between aircraft response and desired reference

command. The details of controller architecture and the update

law are described below.

2.2. Direct adaptive neural controller

The block diagram of the direct adaptive neural controller is

shown in the Fig. 1. r(k) is the reference signal from the pilot.

ec(k) is error between the pitch rate response of the aircraft

(y(k)) and the response of the pilot filter (y*(k)). The objective is

to approximate the control law using neural network such that

the aircraft response follows the reference command. Let us

assume that the number of signals to be tracked is equal to the

number of control variables. The neural network architecture

shown in Fig. 2 with input V 2R2n2þ1 (present stick deflection

and n2 past values of output and stick deflection) and output
u 2 R can be represented as

unnðkÞ ¼ wysðwhVÞ (7)

where wy 2Rh�1 is the weight matrix between the hidden layer

and output layer with h hidden neurons, wh 2R2n2þ1�h is the

weight matrix between the input layer and hidden layer, and

s(�) is the activation function in the hidden layer. Among

various activation functions, hyperbolic tangent function is

used in this study.

The objective of the training strategy is to find the optimal

weights such that the squared error between the aircraft

response and the reference signal in finite horizon (finite time



Fig. 3. Research aircraft.
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data sequence) is minimized.

J ¼
XN

k¼1

ecðkÞ2 (8)

where ec(k) is the difference between the actual output (target)

and the network prediction at any time instant k.

ecðkÞ ¼ y�ðkÞ � yðkÞ (9)

In order to adjust the weight matrices, the back propagation

through time (BPTT) learning algorithm is used in this study

[4].

By universal approximation property of neural networks, it

is possible to approximate any function to desired accuracy if

the inputs and outputs belong to compact sets. For detailed

discussion on convergence of neural network parameters and

robustness to initial conditions, one should refer to [32,33].

If the input to the neural network V and the output unn of the

network belong to compact set, then there exist sufficient

number of hidden neurons h and optimal weight matrices w̄y

and w̄h such that the tracking error ec(k) < e, 8 k > 0. The

optimal weight matrices belongs to compact set B(w).

w̄y; w̄h :¼ arg min
w2BðwÞ

f sup
V 2R2n2þ1

jjḠ½�; �� � unnjjg (10)

The control input unn is

unnðkÞ ¼ w̄ysðw̄hVÞ þ eðVÞ; eðVÞ � e 8V in some input space

(11)

Since the aircraft considered in this paper is unstable, the

response of the aircraft may grow unbounded for bounded

elevator input, i.e., input to the neural network V does not

belong to compact set. Hence, in this paper, we propose an off-

line finite horizon time learning scheme. For this purpose, let us

assume that for a given class of bounded input sequence and any

finite initial condition x0, the state and output does not escape to

infinity in finite time horizon.

sup
k2 ½1;N�

jjyðkÞjj � D (12)

where D is positive real number and N is the sequence length.

Using the above assumption, we define a compact set S as

S :¼fðr; yÞ 2R2 : jjyðkÞ � y0jj � e; u2Ug 8 k2 ½1;N� (13)

where e is a real constant and y0 is initial output. Hence, the

input V to the neural network Nc belongs to compact set inside

the finite time horizon [1, N]. Based on the above statements,

we develop an off-line and on-line learning strategy. The neural

network Nc is first trained off-line using the reference signal

generated for finite sequence [1, N]. Such off-line trained

networks can approximate the control law well within the finite

sequence and stabilize the system for different initial condi-

tions. The off-line trained controller weights are adapted on-

line for various aerodynamic uncertainty and control surface

fault conditions.
3. Research aircraft

3.1. Aircraft configuration

The unmanned aircraft considered for this study, research

aircraft (RA), is shown in Fig. 3. The model features a tailless

delta wing configuration typical of a combat aircraft. The take

off weight of RA is approximately 5.5 kg and is powered by a

ducted fan driven by a 15-cc piston engine (OS91) with an

achievable RPM of approximately 18,000. The fuel used is a

mixture of methanol and castor oil with nitro-methane added to

boost the power. The servos used for control surface deflection

are FUTABA radio-controlled servos.

3.2. Aircraft dynamics and modeling

Based on the assumption of the flat Earth, constant mass

properties, and following the symbols and definition used in

[34], the generic equations of translational and rotational

motion of aircraft dynamics can be expressed as

ẋ ¼ f ðx; u; tÞ (14)

The above system of nonlinear equation describing the

aircraft dynamic behavior is known to us reasonably and

accurately as a mix of analytic expressions and tabular data

[34]. It should be noted that this equation describes the fully

six-degree-of-freedom nonlinear motion of an aircraft in three-

dimensional space. The complexity of the equations of motion

is further increased due to the nonlinearity of and coupling with

the aerodynamic forces and moments. The elements of body-

axes state vector (x) are U, Vand W, which represent the velocity

along x, y and z body axes respectively, P, Q and R, representing

the angular rate along the x, y and z body axes respectively, f, u

and c denoting roll angle, pitch angle and heading angle

respectively, and px, py and pz representing the North, East and

Height coordinates

x ¼ ½U;V ;W ;P;Q;R;f; u;c; px; py;H�T (15)

The aerodynamic force and moment components depend on

the control surface deflections and these deflections form inputs
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to the aircraft model. The control vector comprises of throttle

setting dt, elevator deflection de, aileron deflection da and rudder

deflection dr.

u ¼ ½dt; de; da; dr�T (16)

These aerodynamic forces and moments are determined

from extensive theoretical and experimental works and given in

the format of a numerical look-up table. The complete

aerodynamic data are acquired using low speed wind tunnel

data [35] for static derivatives and analytical methods [36] for

dynamic derivatives.

3.3. Control surface modeling

The control surface servo is modeled using first-order

system. The transfer function between the command signal and

actual deflection is modeled as a first order system:

de

dc

¼ Ka

Tasþ 1
(17)

where Ka = 0.6713 and the actuator time constant Ta = 0.105 s.

The input to the actuator is in the form of pulse width modulated

signal transmitted from the ground and the output is in radians.

The neutral position of the elevator corresponds to a pulse width

of 1.6 ms and varies in the range of 1.2–2.0 ms. Also, it is worth

noting that the control signals computed from the control law

are PWM signals. Though actuators driven by PWM signals are

inherently slow and subjected to rate limits, such rate limits are

not taken into account in the present work. However, the control

surface deflections are sought to be kept within the experimen-

tally determined limits of �15.68.

3.4. Linearized longitudinal model

For obtaining a set of linear equations describing the

longitudinal motion of the aircraft, the nonlinear equations of

motion are numerically perturbed around the trim conditions. In

this paper, the steady state, straight-and-level flight conditions

at two extreme cruise speeds (25 m/s and 45 m/s) are chosen as

a reference flight conditions. In the state-space model, the

perturbed states of the system (x) are forward speed v in m/s,

angle of attack a in rad, pitch rate q in rad/s and pitch angle u in
Table 1

System and control matrices at 25 m/s and 45 m/s cruise speeds and reference mo

Trim cruise speed A

25 m/s -0:1688 0:8500 0 �9:81

�0:03 �3:2797 0:9188 0

0 2:21 �2:7546 0

0 0 1 0

2
664

3
775

45 m/s �2026 1:224 0 �9:81

�0:03 �3:9357 0:9188 0

0 3:1824 �3:3055 0

0 0 1 0

2
664

3
775

Reference model Aref

�3:5392 �2:5088

2 0

� �
rad. The input de of the system is the elevator deflection in

radians. The continuous system and control matrices A and B at

the cruise speeds are given in Table 1.

4. Closed loop specifications

4.1. Closed loop specifications

Though flying qualities specifications are not available for

sub-scale aircraft, such specifications for piloted aircraft can act

as a guideline with respect to which design can be done [39].

For full-scale aircraft, flying qualities evaluation is done

through pilot-opinion rating scales such as the Cooper-Harper

scale [40]. Accordingly, the U.S. military specifications [37],

for level 1 flying qualities (excellent aircraft characteristics and

pilot compensation not a factor for desired performance) state

that the short period (jsp) damping requirement is:

0.35 < jsp < 1.3 and the short period frequency (vnsp)

specification is given in terms of variation of aircraft load

factor with angle of attack. For RA, this translates into:

1.43 < vnsp < 6.42.

4.2. Reference model selection

The pilot stick deflection (reference input) to command

signal transfer function is selected based on flying quality

requirement (level 1 handling quality) outlined above. The

neural flight controller is designed to track the pitch rate (q*)

command signal. The reference model for pilot stick deflection

is given in Table 1. The frequency and damping of the reference

model is 2.24 rad/s and 0.89 which satisfy the short period

specification. The dc gain of the reference model is 0.611 which

means that for a PWM signal of width 0.1 ms (with respect to

the neutral PWM signal of 1.6 ms), the desired pitch rate is 3.58/
s. A large pitch rate is consciously avoided, since RA is

controlled from the ground based on visual cues and reaction

time of the pilot is high.

4.3. Gust disturbance rejection

Subscale aircraft like RA are highly susceptible to atmo-

spheric turbulence that commonly occurs during flight. In order

to determine the gust rejection specifications of the closed loop
del

B Eigen values

�0:4783

�0:6178

�3:2529

0

2
664

3
775

�4:4742

�1:4424

�0:4915

0:2050

2
664

3
775

�0:6888

�0:7414

�4:6842

0

2
664

3
775

�5:3649

�1:7786

�0:4976

0:1973

2
664

3
775

Bref Cref �1.9936 � 1.021i

2

0

� �
0:8864 0:7664½ �
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system, the vertical wind gust noise is taken to have a spectral

density given in Dryden form as [37]:

FwðvÞ ¼
2Lws2

pU

1þ 12ðLw=UÞ2v2

ð1þ 4ðLw=UÞ2v2Þ2
(18)

where v is the frequency in rad/s, s the turbulence standard

deviation, Lw the turbulence scale length and U is the flight

velocity. The turbulence scale length at 1200 m altitude is

Lw = 265 m [37].

The turbulence standard deviations are defined in statistical

terms and classified as light, severe and moderate, with

s = 1.55 m/s for light wind, s = 3.05 m/s for moderate wind and

s = 5.96 m/s for severe wind conditions [37]. RA is usually

flown in mild or calm wind conditions and therefore a standard

deviation of 2.5 m/s is chosen. The gust spectral density at the

two extreme speeds is given in Fig. 4. The frequency range of

concentration of gust disturbance is found to increase with

speed and for the flight condition at 45 m/s it reaches 13 rad/s.

This represents the worst-case scenario when disturbances may

excite the short period mode. Taking this as the benchmark, the

gust rejection specification is to reject all disturbances below

13 rad/s.

4.4. Noise rejection

Though the MEMS sensor used for measuring pitch rate has

an inbuilt 50 Hz low pass filter, it is found that the sensor

outputs are noisy and biased with noise concentration in the

region above 30 rad/s. These noises coupled with the

mechanical vibrations of the airframe could lead to erroneous

measurements making the control of aircraft difficult. Thus

high frequency specification is to reject all noise above 30 rad/s.

4.5. Robustness specifications

The offline/online trained controller should satisfy perfor-

mance requirements (Level 1 flying qualities) in the entire

cruise range of 25–45 m/s. The controller should also be robust

to fault conditions and variations in C.G. location.
Fig. 4. Frequency response of wind spectral density for speeds of 25 and 45 m/s.
5. Simulation results

In our simulation studies, neural controller is designed to

follow pitch rate command signal. The pitch stick to pitch rate

command is defined based on the desired flying quality

requirements. In order to train the neural controller (Nc), pseudo

random pulse reference stick inputs and the desired pitch rate

command signal (q*) are generated for 10 s duration. Similarly,

20 different data sets are generated for various random

reference stick signal and initial conditions. These data are used

to adapt the neural controller weight matrices off-line. The

input to the neural networks are present stick deflection, past

two stick deflections and past four pitch rate (q) and pitch

attitude (u) responses of the aircraft. The output of the neural

controller is the elevator deflection (de) to the aircraft. The

difference between the aircraft pitch rate response and the

reference command is used to adapt the controller weight

matrices. The controller network selected in our simulation

study is N11;35;1
c , i.e., 11 input neurons, 35 hidden neurons and 1

output neuron. The controller network weights are adapted until

the mean square error is less than 0.002. Typical reference input

to the reference command filter and response of the aircraft and

actual command signal during offline training is shown in

Fig. 5. From the figure, we can observe that the controller

parameters adapts such that they start following reference

command accurately. The results clearly indicate that the off-

line trained controller parameters converge to optimal value.

5.1. Indirect adaptive control scheme

The objective of indirect adaptive control scheme is defined

quantitatively as: Given an aircraft model, a reference model

and a reference pilot input (r), the problem is to determine the

elevator input to the aircraft (de) (which will be the output of the

neural network controller) so that the response of the aircraft

response (q) follows the reference model (q*). In indirect

adaptive control, two neural networks namely identifier

network (NI) and controller network (Nc) are used. The

identifier neural network is used to approximate the input/

output relationship of the aircraft dynamics and the controller
Fig. 5. Reference input to the command filter and responses during off-line

training process.
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network is used to approximate the unique control law that

forces the aircraft output to follow the reference model output

accurately. The method of indirect adaptive control relies on the

ability to derive the control law given the identifier model, for a

class of systems. The details on adaptive law for identifier

network and controller network can be found in [3,30].

The input to the NI are present elevator deflection, past two

elevator deflections and past four pitch rate (q) and pitch attitude

(u) responses of the aircraft. The output of the identifier network

is the pitch rate response (q). The difference between the aircraft

pitch rate response and the identifier network is used to adapt the

weight matrices of identifier network. The identifier network

selected in our simulation study is N11;45;1
c , i.e., 11 input neurons,

35 hidden neurons and 1 output neuron. The identifier network is

first trained offline using finite time data set. Pseuo-random

inputs to elevator and corresponding pitch rate response are used

to train the identifier network. Once, the network is trained

offline, the controller network is trained using offline generated

reference input and command signal as explained in direct

adaptive control scheme. In case of indirect adaptive control

scheme, the error signal passed through identifier network to

calculate the error signal to adapt the controller parameters.

5.2. Response at nominal flight conditions

The performance capability of the proposed adaptive neural

flight control scheme is validated using the reference pulse stick

deflection (0.1 in. stick deflection). The off-line trained neural

controller is tested with the reference command signal at

different trim conditions (25 m/s and 45 m/s). The response of

the aircraft for the given reference command at nominal speed

(45 m/s) is shown in Fig. 6(a)–(d). From the Fig. 6(c), we can

clearly observe that the pitch rate response follows the pitch rate

command accurately. From Fig. 6(a)–(d), we can observe that the
Fig. 6. Response of the
proposed neural controller stabilizes the aircraft and also

provides the necessary tracking performance. The elevator

deflection required to track the pitch rate command is shown in

Fig. 7 and the elevator deflection is less than the maximum limit.

The performance of the proposed neural controller is

compared with the indirect adaptive control scheme. For this

purpose, we measure the quantitative performance measures

like maximum absolute error (MAE), root mean square error

(RMSE), maximum absolute elevator deflection (MEL) and

control effort and defined as

MAE ¼ maxjq�ðkÞ � qðkÞj (19)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

ðq�ðkÞ � qðkÞÞ2
vuut (20)

MEL ¼ maxjdeðkÞj (21)

The control effort is equal to the area under the elevator

deflection curve. The performance measures are calculated for

different controller schemes at different flight conditions and

are given in Table 2. From table, we can observe that the

proposed direct adaptive controller perform better than the

other control schemes and also require lesser control effort.

The same can be observed at 25 m/s flight condition.

5.3. Response under gust and sensor noise

UAVs are highly susceptible to atmospheric turbulence that

commonly occurs during flight. In order to determine the gust

rejection specifications of the closed loop system, the vertical

wind gust noise is taken to have spectral density given in

previous section. For purposes of simulating atmospheric gust,

a wide band white noise is passed through the low pass filter
aircraft at 45 m/s.



Fig. 7. Elevator deflection.
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obtained from Dryden model [24].

Hvg
¼ sv

ffiffiffiffiffiffiffiffi
2Lw

pU

r
ð2

ffiffiffi
3
p

Lw=UÞsþ 1

ð2Lw=Usþ 1Þ2
(22)

The sensor noise is added by passing white noise through a

high pass shaping filter 0.002(s + 30)/s + 100, which corre-

sponds to high frequency gain of 0.002. The simulation studies

are carried out at 25 m/s and 45 m/s with atmospheric gust and

noise in the measurement. The responses of the aircraft under

gust and noise at 45 m/s (nominal flight condition) are shown in

Fig. 8.

From the above figure, we can observe that the proposed

neural controller reject the noise and gust very well and also the

control surface deflection is within acceptable limits. The off-

line trained controller is also tested at 25 m/s to study the noise

and gust rejection ability. The performance measures for

proposed neural controller and other control schemes are

calculated at these conditions and given in Table 2. From the

performance measures, we can see that the proposed neural

controller can accurately track the pitch rate command and also

reject the gust and noise disturbances.
Table 2

Performance measures for controller at different flight conditions

Speed, V (m/s) Condition Direct adaptive control

MAE

(8/s)

RMSE

(8/s)

MEL

(8)
Contro

effort

45 Nominal 0.4021 0.0510 3.7994 40.12

With gust and noise 0.3931 0.0515 3.7224 41.77

SMU A = 1.5A 0.3923 0.0696 6.5695 94.03

CSL B = 0.5B 0.5524 0.0880 6.8566 82.21

3% C.G. variation 0.3906 0.0587 3.7124 49.64

25 Nominal 0.4763 0.0623 5.0753 55.32

With gust and noise 0.5123 0.0657 5.1012 56.21

SMU A = 1.5A 0.4763 0.1115 8.9602 125.28

CSL B = 0.5B 0.6536 0.1279 9.1135 107.76

3% C.G. variation 0.4913 0.0721 5.2152 58.33
5.4. Response under fault conditions

In order to test the adaptive nature of the neural controller,

three fault conditions are considered. The controller weights are

initialized to the offline trained values and adapted online. The

adaptation of controller weights starts if the performance index

J (Eq. (11)) crosses a certain threshold value and the learning

rate for weight update is 0.03. During this process, the reference

command is generated using pseudo random inputs for a period

of 100 s. After online adaptation of 100 s, the closed loop is

tested using the same reference command used in offline

testing.

5.4.1. C.G. variation

In the first condition, the center of gravity point of the

aircraft is moved further aft of the aerodynamic center by 3%.

This corresponds to an increase in Ma from 3.1824 to 4.1371.

Such a variation in Ma can be caused by improper placement of

hardware in the instrumentation chamber and also due to

depletion in fuel during flight. It has to be noted that the class of

UAVs to which RA belongs is very sensitive to such changes in

center of gravity position.

The response of the closed loop system is shown in Fig. 9 for

the nominal condition of 45 m/s. Sensor noise and gust

disturbance are also considered in the simulation. The pitch rate

response of the aircraft can be seen to track the reference pitch

rate command quite well. In fact, the sensor noise and gust

disturbances injected in the system are seen to be rejected

completely. The small amplitude high frequency oscillations

seen in the elevator response is due to the presence of sensor

noise. The maximum rate of deflection of the elevator is 198/s,

which is quite low. Variation in center of gravity position for the

cruise speed of 25 m/s is also carried out and it is found that the

model following ability of the closed loop system is preserved.

In fact, the different performance measures outlined in Table 2

give a better picture of the adaptive ability of the proposed

control scheme. Under the proposed control scheme, the

performance measures are better when compared to the indirect

adaptive scheme. In the case of indirect adaptive control

scheme, any error in the identifier model translates into

degraded model matching performance [3].
Indirect adaptive control

l Final jdej
(8)

MAE

(8/s)

RMSE

(8/s)

MAE

(8)
Control

effort

Final jdej
(8)

21 2.7812 0.6296 0.0973 3.9189 44.2315 2.8912

25 2.8551 0.5153 0.1011 4.0741 45.5311 3.0121

21 6.4741 0.9145 0.1295 7.1293 103.2134 7.0145

61 5.5351 1.0524 0.1678 6.9961 91.2516 5.8311

32 3.5851 0.6123 0.0779 4.1141 53.7312 3.7866

61 4.0123 0.6671 0.0916 5.7891 59.9864 4.4529

31 4.1091 0.8218 0.1071 5.8062 60.9232 4.5693

1 8.8951 0.7891 0.1653 9.6312 136.542 9.9234

5 7.5123 0.9012 0.1734 10.0051 119.391 8.7865

41 4.2983 0.9834 0.1108 5.9987 62.3762 4.9385



Fig. 8. Response of the aircraft under sensor noise and gust at 45 m/s. Fig. 10. Response of the aircraft under SMU fault, sensor noise and gust at

45 m/s.
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5.4.2. System matrix uncertainty

In this case, the ‘A’ matrix of the nominal plant is assumed to

vary by 150% (A0 = 1.5A). Since the nominal plant is unstable,

an uncertainty factor of 1.5 (which is greater than 1) is chosen.

This corresponds to the Eigen-values of the plant moving

further into the right-half complex plane. The response of the

aircraft after online adaptation is shown in Fig. 10. Again sensor

noise and gust disturbance are assumed to act on the aircraft.

The ability of the controller to adapt to variations in ‘A’ matrix

is evident from the figure, where the closed loop system closely

follows the reference pitch rate command signal. Though the

maximum elevator deflection is seen to be almost twice when

compared to the response of the nominal closed loop system in

Fig. 8, at 6.5695, the maximum elevator deflection is still less

than the specified limit of 15.68. Also, all performance

measures in Table 2 show that the proposed scheme is better

than the indirect adaptive control scheme.
Fig. 9. Response of the aircraft under 3% C.G. variation with sensor noise and

gust at 45 m/s.
5.4.3. Control surface loss

The third set of simulations corresponds to the case when

there is sudden loss in control surface effectiveness. This is

incorporated in simulations by varying the ‘B’ matrix to 50% its

nominal value. Fig. 11 shows the response of the closed loop

system with B0 = 0.5B along with sensor noise and gust

disturbance.

The model following properties of the closed loop system is

still preserved. However, the maximum control surface

deflection in this case is 6.8566, which is the maximum

among all fault scenarios considered for the plant model at

45 m/s. This is quite understandable since with loss of

effectiveness of the elevator, the elevator deflection required

is higher to achieve better tracking. Similar studies are carried

out for the extreme flight condition of 25 m/s and the

performance measures are listed in Table 2.
Fig. 11. Response of the aircraft under CSL fault, sensor noise and gust at 45 m/s.



Fig. 12. HILS interconnection.

Fig. 13. HILS response.
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5.5. Hardware in the loop simulations

The control surface effectiveness and real time response of the

aircraft to command signals from radio transmitter are tested

using HILS. The requirement of testing the control surface stems

from the fact that actuators are connected to the control surfaces

through hard wires that can introduce nonlinearities such as

backlash and dead zone. Also, there may be un-modeled friction

at the control surface hinges that may affect the real time

performance of the aircraft. Control surface deflection and rate

limits can also be monitored in this setup.

HILS is carried out on dSPACE DS 1104 controller board

with floating point processor. The controller code generated in

dSPACE can easily be downloaded later for implementation on

a DSP micro controller. DSPACE 1104 is interfaced to

MATLAB1 SIMULINKTM where the neural network con-

troller and nominal aircraft longitudinal dynamics are modeled

with a sampling time of 0.02 s. The PWM signals from

transmitter (FUTABAT6XA) are captured at the capture unit of

the controller board and passed through a 100 rad/s low pass

filter to attenuate high frequency noise present in the input. The

PWM signals entering the capture unit are of pulse width 1.2–

2.0 ms with the neutral position of actuator corresponding to

1.6 ms. The neutral PWM value (trim) is deducted from the

input signal to account for the fact that a linear model is being

simulated. Gust and sensor noise are added at the aircraft input

and sensor output to test for chattering in control surfaces and

disturbance rejection capabilities of the closed loop system.

The HILS interconnection is shown in Fig. 12.

The input sequence for HILS is a step command, where the

pilot stick in the transmitter is moved from the initial position to

one end and held for 10 s. The aircraft pitch rate response,

reference command signal and elevator deflections are shown in

Fig. 13 along with the command signal from the transmitter. It

can be seen that the pitch rate follows that the reference output

closely. Also the elevator deflection is within bounds. Gust

disturbance and sensor noise are rejected completely and no

chattering is observed in the elevator.
In order to test the compatibility of the results with Desktop

Simulation (DKS), the same command inputs are given to the

linear model. The pitch rate output of the linear model in DKS

is also shown in Fig. 13. The initial variation between DKS and

HILS is due to the fact that the initial command signal from the

transmitter does not correspond exactly to the neutral value of

the transmitter stick.

5.6. Nonlinear simulations

As a final test of the robustness of the proposed control

scheme, the neural controller is used for tracking a desired pitch

rate in the presence of nonlinearities. A MATLAB1 based

program that incorporates the nonlinear variation of force and

moment coefficients is used for this purpose. The aircraft is first

trimmed at 1200 m above sea level and the reference signal of

0.1 in. stick deflection is applied. Fig. 14 shows the response of

the elevator deflection, reference pitch rate and actual pitch rate

and pitch angle of the aircraft. As in the case of linear



Fig. 14. Nonlinear responses.
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simulations, the actual pitch rate of the aircraft follows the

desired pitch rate closely. However, a notable aspect of the

responses is that the elevator deflection does not reach a steady

value as in the case of linear simulations due to nonlinear

effects. The maximum elevator deflection is however still under

acceptable limits. Thus, the proposed control scheme performs

well in adapting to nonlinear effects.

6. Conclusions

A discrete time direct adaptive controller scheme is

presented for an unstable unmanned aircraft. The bounded

input–output requirement is overcome through the use of an

offline–online training strategy. The main advantages of the

proposed method can be summed up as follows:
1 T
he control effort required in direct adaptive scheme is lesser

than that in indirect adaptive scheme.
2 S
ensor noise and gust disturbance rejection properties are

conserved over the entire cruise speed range with very good

tracking accuracy of the reference signal, proving the

robustness of the controller.
3 C
ontrol surface deflection is maintained well within

saturation limits as shown in the Hardware-in-the-loop

simulations.
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