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Aabstract—Mobile robots could play a significant role in
places where it is impossible for the human to work. In such
environments, neural networks, instead of traditional methods,
are suitable solutions to locally navigate and recognize the
environment’s subspaces. In order to learn and perform two
important functions “environmental recognition” and “local
navigation”, multi-layered neural networks are trained to
process distance measurements received from a laser range-
finder. This paper will focus on a computer based design and
test of this neural system, that includes three neural controllers
for local navigation, and two neural networks for
environmental recognition, fed off-line by a simulated model of
a laser range-finder. These neural networks are the major
components of a control system that performs a global neural
navigation of a mobile robot, which could be used to perform
industrial missions within industrial environments. This
control system can guide a mobile robot to track its predefined
path to arrive to its final goal through a set of sub-goals, or
autonomously plan its path to arrive to the desired final goal,
and to avoid obstacles that are found along the way.

I. INTRODUCTION

With the progress of technology, autonomous navigation
and path planning of mobile robots (MRs) have

become a significant staple of the robotics industry.
However, we have recently seen their migration into other
domains such as drug delivery, search and rescue, as well as
highway delineation. These new application areas require
the navigation and manoeuvring of robotic structures within
harsh, and possibly hostile, environments. Learning and
adaptation have become two important features of any
automated system meant to operate in environments that
would present clear dangers for humans, such as places of
high temperatures, deep space surroundings, and
contaminated areas.

Conventional methods for controlling MRs show slow
processing of data resulting from a sensory unit mounted on
a MR, because of the serial processing of that data [1].
These methods need great efforts in programming to deal
with nonlinear functions, as well as the difficulty of adapting
to dynamic environments. Additionally, traditional
approaches for robotic navigation are based on a detailed,
accurate metric description of the environment [2], such as
potential fields [3] and graph search methods [4]. Where it is
difficult to perform in real-time applications [5], the prompt
and high-speed processes for the input data are very
important, especially if the kinematic constraints of the robot
are taken into account [2]. Moreover, since the conventional
methods represent the path in terms of artificial coordinate
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systems, they are highly vulnerable to spatial inaccuracies
due to the sensory devices and movement actuators.
Henceforth, neural networks are replacing traditional
methods in the design of possible solutions to perform global
navigation and path planning of a MR.

II. MODELING APPROACH

In this research, the modeling of a MR is executed using
a personal computer. All processes of mobile movement
control, measurements, mapping of working places,
preparation and processing of databases were required for
neural network (NN) training, while the comparison of
results was performed by simulation using a high level
programming language. The Matlab tool was used to train
the NNs.

A.  The Robot Model

As shown in Fig. 1, a differential drive vehicle was
selected, where steering is affected by the difference in
velocity of the tracked wheels. These wheels can be driven
by two low-level DC motors located on either side of the
center of the robot [6].
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Y

Fig. 1. MR model of differential drive vehicle

This type of MR has the ability to turn in place. The
maximum dimension of the rectangular robot is 1 meter,
which equals the diameter of the circle that surrounds the
robot. Forward orientation angle 8 and Cartesian coordinates
Xc and Y determine the vector that represents the location of
the MR. For distance measurements and direction of
obstacles, a laser range finder [7] for the sensory system of a
MR was suggested. To simulate the measurements of the
proposed laser range finder, an algorithm [6] was used where
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the measured distances are relative to the MR dimensions (i.
e. to the diameter of the circle that surrounds the robot). The
correct modeling of the MR was proven by simulation tests
that were conducted using the Simulink tool. The tests
proved that the model of the MR is able to respond to the
required changes in terms of both speed and direction [6].

III. ENVIRONMENTAL RECOGNITION

Fig. 2 shows the distribution of the selected
measurements on the robot body. Nineteen directions
regularly distributed with a separation angle of 15° surround
the MR, aimed to cover most of the environment around the
robot.

i

Fig. 2. Laser range-finder distance measurements for environmental
recognition

In order to plan a mission path that a MR should follow,
the construction map of the MR working place was
considered to be available. The path tracking algorithm was
then run while recognizing indoor subspaces whether the
drive system is on-line or off-line. This path was classified
according to a symbolic description of indoor subspaces,
which was divided into a number of places such as corridors
and cross- roads, etc.

A. Environmental Recognition NNs

A multi-layer NN model was chosen for this research [8].
It consists of three layers: the input, hidden and output
layers, with a log-sigmoid function to activate the neurons.
Two environmental recognition NNs (ERNNs) were
designed: ERNN1 and ERNN2. Fig. 3 shows the input layer
of ERNNI that consists of 19 neurons, which associate with
the output signals of the laser range finder of the MR’s
measuring system. The hidden layer consists of 19 neurons;
this was found, through experimentation, to be the most
suitable number for that layer.

Note that the number of neurons in the output layer
represents the number of subspaces that are to be classified.
These subspaces can be considered to be seven subspaces
[2], or eleven subspaces [9].
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Fig. 3. NN1 structure diagram

Fig. 4 illustrates seven standard subspaces that are
recognized by ERNN1, which are: corridor (CO), cross roads
(CR), frontal T shaped cross-road (TF), left junction T
shaped cross-road (TL), right junction T shaped cross-road
(TR), left corner (LC), and right corner (RC).

> <o >

Fig. 4. ERNNI classification subspaces

ERNN2 was designed and trained for environmental
recognition to cover the other five subspaces, which has the
same number of layers as ERNN1 but differs in the number
of the neurons in the output layer (five). These represent five
subspaces that could face the MR during its movement, and
are defined as follows: dead end (DE), exit (EX), entrance
(En), angle wall (AW), and room (RM). Fig. 5 shows these
subspaces. In this paper, we will concentrate on the training
and testing of ERNNI1. The reader is referred to [6] for a
more detailed explanation of ERNN2.
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Fig. 5. ERNN2 classification subspaces

B. Data Base for Network Training

To train the NN, one must provide a suitable quantity of
input vectors with the desired output vectors. This allows the
NN to generalize previously unseen cases, as well as make
correct approximations.
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Fig. 6. Training and testing positions of NNs

Training areas were divided into a regular locations array.
Eleven locations were selected for training in every subspace
of the seven subspaces shown in Fig. 4. The orientation of
the robot was varied by 15° within an angular sector of 90°
(i. e. £ 45° from the front direction of the subspace as shown
in Fig. 6).

C. ERNNI Learning

To train the designed ERNNI, the back propagation
learning algorithm was used because it is suitable for multi-
layered NN learning. To avoid the problem of local minima,
the technique of back propagation with momentum was used.
This is due to its better and faster performance when
compared to the standard back propagation algorithm [10].
A random function was selected to generate initial small
weights suitable for ERNNI.

A learning rate of 0.001 was introduced to avoid losing
the main learning direction when introducing unusual
training vectors to the NN [11]. After 31000 training epochs,
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ERNNI converged with a minimum possible error, where the
sum squared errors (SSE) was 15.17.

D. ERNNI Performance Test

To check the capability of ERNN1 for generalization, the
robot was placed at differing locations from those used for
training, as shown in Fig. 6. Ten locations were selected in
every subspace. The robot was directed into three frontal
directions in every location, -45° right, 0° front, and 45° left,
assuming 0° is the front direction of the subspace as shown
in Fig. 1.

TABLE L.
CRITICAL CASES OF ERNN1
Actual ERNNT1’s actual output ERNNT1’s desired output
Place T s a3 |21 |7]6[5]4]3[2]1
Cco 0O]0]JO]O0Of[O0OfO([02500[0[0]0|O0[0][]1
CR 0 1 00 ] 010010 (OfO(OfO]|O|]]|O
CR 0 ]0.08/0.01] 0 [ O (029 0 |O|O|O|O|O|1L |0
CR 0] 01013 0] 0 (043 0 [O|O|0O[0|O0 |10
CR 0 1 Of0]0]0]0(0OfO[O[O|O]|1]|O
CR 0 10991 0 | 0 [0 (0050 |0|O|O|O|O[L|O
RC 0] 0] 0 |015(028f{ 0 [0 |0O|O|O]|O|L[OfO
TR 0] 0 |058 0 [ O [0.14[0.01}/0|0|1]0|0[0[O0
TR 010751 0] 0f0fO0Of[O0|0]0O|1]0]|0[O0O
TR 0] 0 0051 0 o0 (o010 |O|O|1]0|0[O0O
TL 01009 0 O0]JOf[O]|O(fO|1T[0O[0]|0|O]O
TL 01002/ 0| 0| 0] 0] O0|0|1]|0]O0]|O0O[OfO

The performance of ERNNI1 was tested, with table I
showing the critical locations for ERNNI. This table
provided insightful information concerning the locations that
ERNNI1 shall be trained at. The best result was achieved for
the TF. The poorest result was for the CR, due to the MR’s
proximity to the wall where the scanning sensory sector of
the robot was quite small. Therefore, additional training
measurement vectors of the critical locations were introduced
to ERNNI1 to allow for a more complete learning cycle.

IV. LOCAL NAVIGATION

For the local navigation of a MR, three neural controllers
were designed and trained. These controllers are termed:
“Keep Right”, “Keep Left”, and “Pass a Cross-Road”, where:
1) The “Keep Right” controller is to keep the robot at the

right side of the surroundings,

2) The “Keep Left” controller is to keep the robot at the left
side of the surroundings, and
3) The“Pass a Cross-Road” controller is to pass a cross road.

Furthermore, these neural controllers avoided obstacles,
which were found in a MR’s way. They also received
commands from a decision maker that played the role of
global navigator, which will be discussed in section V. For
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the purpose of local navigation and to achieve higher
resolution in distance measurement, the measuring range of
the laser range-finder was limited to 3.5 meters. This helped
in distinguishing the nearby obstacles, when the
measurement vector was normalized to a value between 0
and 1.

+50

J 15°

-50

Fig. 7. Laser range-finder distance measurements for local navigation

As shown in Fig. 7, thirteen measurements were taken
within a measuring sector of —90° to 90° to the frontal
direction of the robot, with intervals of 15°. These
measurements were fed to the local navigation neural
controller (LNNC) that has the structure shown in Fig. 8.

> Straight

> Left

Output Layer

Input Layer

Hidden Layer

Fig. 8. General Structure of the LNNCs

Fig. 9. Follow wall training locations and directions

A. Design of the “Keep Right” Neural Controller

To train the “Keep Right” LNNC, a database was
collected by locating the MR on 111 positions as shown in
Fig. 9 and Fig. 10. The required steering signal was
considered to move the robot a step, while trying to keep it at
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a safe position from the obstacles. The database contained
the training vectors, where every vector had two parts. The
first part represented the sensory input of the LNNC shown
in Fig. 8. These are the thirteen distance measurements of
the laser range-finder. The second part was the desired
output which represented the steering signal in binary code,
for example (1 0 0: is Turn Left), (0 0 1: is Turn Right), and
(0 1 0: is Go Straight).

s
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Fig. 10. Turn right at cross-road training locations

Furthermore, to train the “Keep Right” LNNC, the
Matlab Neural Networks Tool Box was used to run the back
propagation algorithm with momentum and adaptive learning
rate [8]. Fig. 11 shows the strategy of the training technique.

Movement
Code (010)

General
Experience of
Driving

. Measurem Neural
Laser Range-Findex >
E Network
v Vector /

Fig. 11. Training of the LNNCs
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After 92000 training epochs, the weights converged when C. Design of the “Pass a Cross-Road” LNNC

the total SSE was equal to 2.000011. The test was done for

the “Keep Right” LNNC in unknown environments, and it The design structure of this controller is similar to the

proved to exhibit a good performance as shown in Fig. 12. design of the “Keep Right” LNNC. The main difference is
the training database introduced to the neural network to
learn its task. Similar to the above-mentioned techniques,
database training vectors were collected by locating the MR
at 47 positions as shown in Fig. 15.

Fig. 12. “Keep Right” LNNC test in unseen environment
B. Design of the “Keep Left” LNNC

To design the “Keep Left” LNNC, it was easier to use the
“Keep Right” LNNC to generate the appropriate steering Fig. 15. Pass a cross-road and then keep right training locations and
signals by spatially mirroring the sensory inputs of the “Keep directions
Right” neural controller, and changing the sign of the
steering signal [2]. Fig. 13 shows the algorithm used to
convert the “Keep Left” LNNC.

The training vectors were enough to train the LNNC for
passing a cross. The network weights converged after 43564
epochs. The SSE for the training vectors was equal to 1.10%,
which was the targeted error. Fig. 16 shows the test of the

Sensory input vector [ Making Mirror of } “Pass a Cross-Road” neural controller. It can be noticed that
Measurement Vector the MR can pass the cross-road when it recognizes the cross.
“Keep Right”
Neural Network
j
steering signal *‘

Fig. 13. Algorithm to convert to “Keep Left” LNNC

Fig. 16. “Pass a Cross-Road” test
V. GLOBAL NAVIGATION
Neural global navigation provided control of a MR’s

direction, planning of its path to the main goal, tracking a
predefined path as sub-goals, and avoidance of expected and
unexpected obstacles. Fig. 17 shows the block diagram of
our neural control system designed and developed to achieve
movement direction and control of a MR.

A. Decision Maker

Steering Signal

Fig. 14. “Keep Left” LNNC test at in unseen environment

As shown in Fig. 14, the test was conducted for the The main duty of the decision-maker, shown in Fig. 17, is
“Keep Left” LNNC in different environments and it proved  to achieve the global navigation that will move a MR from
to exhibit a satisfactory performance. its current position to the main goal, track sub-goals found in
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a predefined path, and finally get to the main goal. For local
navigation missions, the decision-maker shall select between
the aforementioned three LNNCs: “Keep Right”, “Keep
Left” and “Pass a Cross-Road”. This selection is performed
by two different methods: autonomously, or by following the
symbolic predefined path description. Considering both
methods, our first and second ERNNs were used. An
additional three tasks: “go straight” for short distances, “turn
angle”, and “go to goal”, were also used when a line of sight
becomes clear between the MR and the main goal.

Goal or sub yoal

|

Predefined path Decision Neural

Maker Environmental
1 Recognition

—

£

Range Finder Signals

~

Keep Right Neural
coniroller

Pass Cross Neural
coniroller

Keep Left Neural
coniroller

Mabile Raobot
<

Fig. 17. Global neural navigation control system

B.  Predefined Path Planning

For the path planning approach, a combination of two
methods was used. The first method determined sub-goals,
and the second method autonomously found the robot path.
Considering the first method, we sequenced the path using
twelve subspaces (i.e. nodes and connections), which was
identified using seven subspaces in [12]. A sequence of
subspaces can be specified by an expert after providing the
industrial working environment map, and knowing the
direction from where the MR will view the subspaces. These
subspaces can then be recognized by the designed ERNNS,
where a new algorithm with a different technique from
Biewald [12] was used. Fig. 18 shows the environment and

2830

predefined path used in [12], but we tabulated the mission in
a different way. table II shows the mission description where
we used the classification of twelve subspaces that can be
recognized by our ERNNs. The author in [12] considered
the existence of a CO between every two subspaces.
However, for the necessity of contrast and path tracking, we
defined additional CO subspaces only in between every two
adjacent similar nodes, such as nodes 24, 25, 26, and 27
shown in Fig. 18. Also, in [12], subspace 17, shown in Fig.
18, was considered as a CR, however it actually was an EX
to a hallway. Furthermore, subspace 18 was defined as T
shaped cross road in [12] , whereas we defined it as an EN.

T

e

Fig. 18. Predefined path of start position, sub-goals, and main goal

TABLE Il
PATH DESCRIPTION
LNNC Selected | Subspace No. Subspace Path
ERNN in Fig. 18
R 1 24 co 1
R 1 3 TF 2
L 1 2 TR 3
R 1 1 RC 4
L 1 6 TF 5
R 1 5 TR 6
R 1 10 RC 7
L 1 11 TL 8
R 2 17 EX 9
R 2 18 EN 10
R 1 19 TR 11
R 1 20 LC 12
R 1 21 LC 13
R 1 22 TF 14
R 1 23 CR 15
R 1 25 Cco 16
L 1 16 CR 17
S 1 15 TR 18
IL, 1 26 co 19
L 1 13 TR 20
L 2 27 EX 21
L 1 9 TR 22
R 1 8 TL 23
L 2 24 Cco 24
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Fig. 19 shows the simulation performance test for the
global neural navigation control system (GNNCS) at the
factory environment based on the predefined path shown in
Fig. 18 and described in table II. The GNNCS successfully
achieved the mission and avoided the unexpected obstacles.

This Can be stopped

By pressing any Key

Fig. 19. The GNNCS performance at the factory environment based on
the predefined path

Passa
Cross-Road
Neural
Controller

i

Keep Left
Neural
Controller

To the Right or
Left

Neural
Controller

Fig. 20. Local navigation neural controller’s selection process used by
autonomous path planning algorithm

C. Autonomous Path Planning

Our second method was to autonomously get to the main
goal from the present position of the MR. The decision-
maker used our ERNNI to check if the MR faced a cross-
road and calculated its direction to the goal (DTG) angle with
respect to the current frontal direction of the MR. These two
factors helped to determine the neural controller for local
navigation that must be used. Other factors were also
considered such as the existence of obstacles between the

2008 International Joint Conference on Neural Networks (IJCNN 2008)

MR and the main goal, as well as the distance between the
MR and the main goal. table III shows the linguistic values
of the angle between the MR’s current frontal movement
direction, and the direction from the current location of the
MR and the main goal’s location. In our simulation, we
considered that the MR was equipped with a signal receiver
that can detect coded signals transmitted from the goal
location, or a MR’s base (in the case of returning back to its
base location after executing its mission) and decoded them
to determine the direction to the main goal or to its base.
Fig. 20 shows the process of selecting the local navigation
neural controller that was needed to perform a mission
assigned by the algorithm of autonomous path planning.
This algorithm was tested using different cases as shown in
Fig. 21 and Fig. 22, and as can be seen, it proved to possess
the desired performance.

TABLE III.
LINGUISTIC VALUES OF THE DTG ANGLE

Linguistic values of

Negative Negative Strait Positive Positive Big
Big Small (ST) Small (PB)
(NB) (NS) (PS)

-180 [ 91 [ 90 [ 31 [ 30 ] 30 | 31 [ 90 | 91 [ 180

Fig. 21. GNNCS performance at the factory environment using autonomous
path planning, this case considers the existence of a CR

- . :
Start Direction

Fig. 22. GNNCS performance at the factory environment using
autonomous path planning for different case
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VI. CONCLUSION

Most mobile robotic systems are non-linear systems with
kinematics that are very difficult to control by traditional
methods, while, multi-layered neural networks have proved
their competence to control mobile robotic systems,
particularly when faced with real-time obstacle detection and
avoidance.

The paper’s main contributions are a novel training
technique based on the method of creating a flat files
database, and the number of utilized neural networks that
were used in the control system of the MR. By comparison,
the number of neural networks in [9] was equal to the
number of subspaces to be classified, while in [12], to
recognize only a total of 7 subspaces, one neural network
was designed and trained by locating the mobile robot
randomly in the training subspaces using the uniform
distribution function. In this paper, the training was guided
and the locations were previously determined, which differs
from the technique used in [9] and [12]. The use of two
neural networks, ERNNI and ERNN2, allowed for a
successful recognition of twelve subspaces.

The designed algorithm for controlling a MR is also a
new approach, especially when a novel way to define a MR’s
path was developed and compared with what has been
previously published. The simulation testing of both of our
developed methods for path planning proved their efficiency
and capability, in achieving the global navigation of the MR,
controlling the direction of the MR to track its planned path,
and reaching sub-goals and the main goal while avoiding
obstacles.

This research also showed the significance of using
neural techniques as an intelligent system to solve complex
and critical control problems, where our five designed and
trained neural networks were the base of the global
navigation system. The two environmental recognition NNs
were capable of recognizing the searched subspaces despite
the fact that these subspaces were not in the standard shape
that the NNs were trained on. Finally, the neural controllers
for local navigation, “Keep Right”, “Keep Left” and “Pass a
Cross-Road” successfully performed in previously unseen
environments.

Future improvements will focus on the integration of the
GNNCS with a fuzzy logic system to create a hybrid fuzzy-
neural control system in order to achieve the MR’s speed
control, as well as the GNNCS’ utilization to resolve
simultaneous localization and mapping (SLAM) problems
that exist when autonomous robots traverse unstructured
environments.

Future research includes the integration of the developed
autonomous navigation scheme to the intelligent sensor
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agents (ISAs) presented in [13]. These agents are intended
for the autonomous investigation of relevant parameters in
natural living environments, industrial or laboratory
hazardous environments, polluted environments, water
treatment plants, nuclear stations, war zones, or remote
difficult to reach environments such as mining and deep-sea
exploration. As an individual ISA only offers local and
limited information about the environment, multiple and
diverse ISAs are needed to cover the large area and multi-
parameter natural environments that are monitored in real-
life situations. A robust local navigation and environmental
recognition scheme is required for the resolution of the
SLAM problem that exists within intelligent robotic agents
traversing unstructured environments. The research
presented in this paper provides a proven and deployable
methodology for the control system of each of the ISAs.
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