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Outline

1. Fuzzy sets and set-theoretic operations.

2. Fuzzy relations.

3. Fuzzy systems

4. Linguistic model, approximate reasoning
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Classical Set Theory

A set is a collection of objects with a common property.
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Classical Set Theory

A set is a collection of objects with a common property.

Examples:

• Set of natural numbers smaller than 5: A = {1, 2, 3, 4}
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Classical Set Theory

A set is a collection of objects with a common property.

Examples:

• Set of natural numbers smaller than 5: A = {1, 2, 3, 4}

• Unit disk in the complex plane: A = {z | z ∈ C, |z| ≤ 1}
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Classical Set Theory

A set is a collection of objects with a common property.

Examples:

• Set of natural numbers smaller than 5: A = {1, 2, 3, 4}

• Unit disk in the complex plane: A = {z | z ∈ C, |z| ≤ 1}

• A line in R
2: A = {(x, y) | ax + by + c = 0, (x, y, a, b, c) ∈ R}
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Representation of Sets

• Enumeration of elements: A = {x1, x2, . . . , xn}

• Definition by property: A = {x ∈ X | x has propertyP}

• Characteristic function: µA(x) : X → {0, 1}

µA(x) =











1 x is member of A

0 x is not member of A
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Set of natural numbers smaller than 5

1

1

876543 x2
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Fuzzy sets
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Why Fuzzy Sets?

• Classical sets are good for well-defined concepts (maths,

programs, etc.)

• Less suitable for representing commonsense knowledge

in terms of vague concepts such as:

– a tall person, slippery road, nice weather, . . .

– want to buy a big car with moderate consumption

– If the temperature is too low, increase heating a lot
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Classical Set Approach

set of tall people A = {h | h ≥ 180}

h [cm]

1

180 190170
0

A
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Logical Propositions

“John is tall” . . . true or false

John’s height: hJohn = 180.0 µA(180.0) = 1 (true)

hJohn = 179.5 µA(179.5) = 0 (false)

h [cm]

1

180 190170
0

A
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Fuzzy Set Approach

h [cm]

A

0.6

180 190170

0

1

µA(h) =























1 h is full member of A (h ≥ 190)

(0, 1) h is partial member of A (170 < h < 190)

0 h is not member of A (h ≤ 170)
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Fuzzy Logic Propositions

“John is tall” . . . degree of truth

John’s height: hJohn = 180.0 µA(180.0) = 0.6

hJohn = 179.5 µA(179.5) = 0.56

hPaul = 201.0 µA(201.0) = 1

h [cm]

A

0.6

180 190170

0

1
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Subjective and Context Dependent

h [cm]

0.6

180 190170
0

1

tall in China tall in Europe tall in NBA
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Shapes of Membership Functions

x

1

0

triangular trapezoidal bell-shaped
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Representation of Fuzzy Sets

• Pointwise as a list of membership/element pairs:

A = {µA(x1)/x1, . . . , µA(xn)/xn} = {µA(xi)/xi | xi ∈ X}

• As a list of α-level/α-cut pairs:

A = {α1/Aα1, α2/Aα2, . . . , αn, Aαn} = {αi/Aαi | αi ∈ (0, 1)}
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Representation of Fuzzy Sets

• Analytical formula for the membership function:

µA(x) =
1

1 + x2
, x ∈ R

or more generally

µ(x) =
1

1 + d(x, v)
.

d(x, v) . . . dissimilarity measure

Various shorthand notations: µA(x) . . . A(x) . . . a
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Linguistic Variable

1

t (temperature)

3020 40

base variable

linguistic
terms

linguistic variable

membership
functions

semantic
rule

0

µ

highmediumlow

TEMPERATURE

0
10

Basic requirements: coverage and semantic soundness
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Properties of fuzzy sets
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Support of a Fuzzy Set

supp(A) = {x | µA(x) > 0}

0

1

supp( )A
x

A

support is an ordinary set
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Core (Kernel) of a Fuzzy Set

core(A) = {x | µA(x) = 1}

0

1

core( )A
x

A

core is an ordinary set
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α-cut of a Fuzzy Set

Aα = {x | µA(x) > α} or Aα = {x | µA(x) ≥ α}

0

1

x

a-level
a

A
a

A

Aα is an ordinary set
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Convex and Non-Convex Fuzzy Sets

0

1

a

convex non-convex

x

A B

A fuzzy set is convex ⇔ all its α-cuts are convex sets.

R. Babuška, Delft Center for Systems and Control, SC4081 24



Non-Convex Fuzzy Set: an Example

1

64 age [years]

high-risk age

483216

High-risk age for car insurance policy.
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Fuzzy Numbers and Singletons

0

1

fuzzy number
"about 3"

fuzzy
singleton

3 8 x

Fuzzy linear regression: y = 3̃x1 + 5̃x2
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Fuzzy set-theoretic operations
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Complement (Negation) of a Fuzzy Set

A

0

1

x

A

µĀ(x) = 1− µA(x)
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Intersection (Conjunction) of Fuzzy Sets

0

1

x

A B

µA∩B(x) = min(µA(x), µB(x))
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Other Intersection Operators (T-norms)

Probabilistic “and” (product operator):

µA∩B(x) = µA(x) · µB(x)

 Lukasiewicz “and” (bounded difference):

µA∩B(x) = max(0, µA(x) + µB(x)− 1)

Many other t-norms . . . [0, 1]× [0, 1] → [0, 1]
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Union (Disjunction) of Fuzzy Sets

0

1

x

A B

µA∪B(x) = max(µA(x), µB(x))
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Other Union Operators (T-conorms)

Probabilistic “or”:

µA∪B(x) = µA(x) + µB(x)− µA(x) · µB(x)

 Lukasiewicz “or” (bounded sum):

µA∪B(x) = min(1, µA(x) + µB(x))

Many other t-conorms . . . [0, 1]× [0, 1] → [0, 1]
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Demo of a Matlab tool
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Linguistic Modifiers (Hedges)

Modify the meaning of a fuzzy set.

For instance, very can change the meaning of the fuzzy set

tall to very tall.

Other common hedges: slightly, more or less, rather, etc.

Usual approach: powered hedges:

µMp(A) = µPA
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Linguistic Modifiers: Example

0

0.2

0.4

0.6

0.8

1
µ(x)

A

More or less A

Very A

x

µvery(A) = µ2A µMore or less(A) =
√
µA
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Linguistic Modifiers

not very smallmore or less small

0 5 10 15 20 25
0

0.5

1

x

Small

rather big

Medium Big
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Fuzzy Set in Multidimensional Domains

x
y

A = {µA(x, y)/(x, y) | (x, y) ∈ X × Y }
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Cylindrical Extension

x2

A

x1
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Cylindrical Extension

x2

A

x1
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Cylindrical Extension

x2

A

x1

extx2(A) = {µA(x1)/(x1, x2) | (x1, x2) ∈ X1 ×X2}
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Projection

A

x2

x1
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Projection onto X1

A

A1

x2

x1

projx1(A) = { sup
x2∈X2

µA(x1, x2))/x1 | x1 ∈ X1}
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Projection onto X2

A

A2

x2

x1

projx2(A) = { sup
x1∈X1

µA(x1, x2)/x2) | x2 ∈ X2}
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Intersection on Cartesian Product Space

An operation between fuzzy sets are defined in different

domains results in a multi-dimensional fuzzy set.

Example: A1 ∩A2 on X1 ×X2:

A2

x2

A1

x1
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Intersection on Cartesian Product Space

An operation between fuzzy sets are defined in different

domains results in a multi-dimensional fuzzy set.

Example: A1 ∩A2 on X1 ×X2:

A2

x2

A1

x1
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Intersection on Cartesian Product Space

An operation between fuzzy sets are defined in different

domains results in a multi-dimensional fuzzy set.

Example: A1 ∩A2 on X1 ×X2:

A2

x2

A1

x1
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Intersection on Cartesian Product Space

An operation between fuzzy sets are defined in different

domains results in a multi-dimensional fuzzy set.

Example: A1 ∩A2 on X1 ×X2:

A2

x2

A1

x1
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Fuzzy Relations

Classical relation represents the presence or absence of in-

teraction between the elements of two or more sets.

With fuzzy relations, the degree of association (correla-

tion) is represented by membership grades.

An n-dimensional fuzzy relation is a mapping

R : X1 ×X2 ×X3 . . .×Xn → [0, 1]

which assigns membership grades to all n-tuples

(x1, x2, . . . , xn) from the Cartesian product universe.
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Fuzzy Relations: Example

Example: R : x ≈ y (“x is approximately equal to y”)

µR(x, y) = e−(x−y)2
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0
0.5

1
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0
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0.5
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x
y
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x
y
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Relational Composition

Given fuzzy relation R defined in X × Y and fuzzy set A

defined in X, derive the corresponding fuzzy set B defined

in Y :

B = A ◦R = projY (extX×Y (A) ∩ R)

max-min composition:

µB(y) = max
x

min (µA(x), µR(x, y))

Analogous to evaluating a function.
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Graphical Interpretation: Crisp Function

x

y

x

y
crisp argument interval argument
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Graphical Interpretation: Interval Function

crisp argument

x

y

interval argument

x

y
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Graphical Interpretation: Fuzzy Relation

x

y

x

y

crisp argument fuzzy argument
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Max-Min Composition: Example

µB(y) = max
x

min (µA(x), µR(x, y)), ∀y

[

1.0 0.4 0.1 0.0 0.0

]

◦





























0.0 0.0 0.0 0.4 0.8

0.0 0.1 1.0 0.2 0.0

0.0 1.0 0.0 0.0 0.0

0.0 0.9 0.0 0.0 0.0

0.0 0.0 0.8 0.3 0.0





























=
[

0.0 0.1 0.4 0.4 0.8

]

R. Babuška, Delft Center for Systems and Control, SC4081 54



Fuzzy Systems
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Fuzzy Systems

• Systems with fuzzy parameters

y = 3̃x1 + 5̃x2

• Fuzzy inputs and states

ẋ(t) = Ax(t) + Bu(t), x(0) = 2̃

• Rule-based systems

If the heating power is high

then the temperature will increase fast
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Rule-based Fuzzy Systems

• Linguistic (Mamdani) fuzzy model

If x is A then y is B

• Fuzzy relational model

If x is A then y is B1(0.1), B2(0.8)

• Takagi–Sugeno fuzzy model

If x is A then y = f (x)
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Linguistic Model

If x is A then y is B

x is A – antecedent (fuzzy proposition)

y is B – consequent (fuzzy proposition)
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Linguistic Model

If x is A then y is B

x is A – antecedent (fuzzy proposition)

y is B – consequent (fuzzy proposition)

Compound propositions (logical connectives, hedges):

If x1 is very big and x2 is not small
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Multidimensional Antecedent Sets

A1 ∩A2 on X1 ×X2:

A2

x2

A1

x1
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Partitioning of the Antecedent Space
A

2
  
1

A
2
  
3

A
2
  
2

A11 A1  3A1  2 A11

A
2
  
1

A1  3

A
2
  
3

A1  2

A
2
  
2

x2

x1

x2

x1

other connectivesconjunctive
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Inference Mechanism

Given the if-then rules and an input fuzzy set, deduce the

corresponding output fuzzy set.

• Formal approach based on fuzzy relations.

• Simplified approach (Mamdani inference).

• Interpolation (additive fuzzy systems).
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Formal Approach

1. Represent each if–then rule as a fuzzy relation.

2. Aggregate these relations in one relation representative

for the entire rule base.

3. Given an input, use relational composition to derive the

corresponding output.
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Modus Ponens Inference Rule

Classical logic

if x is A then y is B

x is A

y is B

Fuzzy logic

if x is A then y is B

x is A′

y is B′
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Relational Representation of Rules

If–then rules can be represented as a relation, using impli-

cations or conjunctions.

Classical implication

A B A → B (¬A ∨B)

0 0 1

0 1 1

1 0 0

1 1 1

A\B 0 1

0 1 1

1 0 1

R: {0, 1} × {0, 1} → {0, 1}
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Relational Representation of Rules

If–then rules can be represented as a relation, using impli-

cations or conjunctions.

Conjunction

A B A ∧ B

0 0 0

0 1 0

1 0 0

1 1 1

A\B 0 1

0 0 0

1 0 1

R: {0, 1} × {0, 1} → {0, 1}
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Fuzzy Implications and Conjunctions

Fuzzy implication is represented by a fuzzy relation:

R: [0, 1]× [0, 1] → [0, 1]

µR(x, y) = I(µA(x), µB(y))

I(a, b) – implication function

“classical” Kleene–Diene I(a, b) = max(1− a, b)

Lukasiewicz I(a, b) = min(1, 1− a + b)

T-norms Mamdani I(a, b) = min(a, b)

Larsen I(a, b) = a · b

R. Babuška, Delft Center for Systems and Control, SC4081 67



Inference With One Rule

1. Construct implication relation:

µR(x, y) = I(µA(x), µB(y))
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Inference With One Rule

1. Construct implication relation:

µR(x, y) = I(µA(x), µB(y))

2. Use relational composition to derive B′ from A′:

B′ = A′ ◦R
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Graphical Illustration

µR(x, y) = min(µA(x), µB(y)) µB′(y) = max
x

min (µA′(x), µR(x, y))

R
A B

= min( , )

x

y

A
B

A’

min(A’,R)

max(min(A’,R))

x

y

R

B

B’

µ

A
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Inference With Several Rules

1. Construct implication relation for each rule i:

µRi
(x, y) = I(µAi

(x), µBi
(y))

2. Aggregate relations Ri into one:

µR(x, y) = aggr(µAi
(x))

The aggr operator is the minimum for implications and

the maximum for conjunctions.

3. Use relational composition to derive B′ from A′:

B′ = A′ ◦R
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Example: Conjunction

1. Each rule

If x̃ is Ai then ỹ is Bi

is represented as a fuzzy relation on X × Y :

Ri = Ai ×Bi µRi
(x,y) = µAi

(x) ∧ µBi
(y)
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Aggregation and Composition

2. The entire rule base’s relation is the union:

R =

K
⋃

i=1

Ri µR(x,y) = max
1≤i≤K

[µRi
(x,y)]

3. Given an input value A′ the output value B′ is:

B′ = A′ ◦R µB′(y) = max
X

[µA′(x) ∧ µR(x,y)]
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Example: Modeling of Liquid Level

Fo  u  t

h

Fin

- If Fin is Zero then h is Zero

- If Fin is Med then h is Med

- If Fin is Large then h is Med

Zero Medium

10

1

3
h

2

Zero LargeMedium

0

1

10020

Fin

40 8060
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R1 If Flow is Zero then Level is Zero
Z

er
o

M
ed

iu
m

1

h

m

Zero LargeMedium
1

Fin

m

Fin

R1
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R2 If Flow is Medium then Level is Medium
Z

er
o

M
ed

iu
m

1

h

m

Zero LargeMedium
1

Fin

m

Fin

R2

R. Babuška, Delft Center for Systems and Control, SC4081 76



R3 If Flow is Large then Level is Medium
Z

er
o

M
ed

iu
m

1

h

m

Zero LargeMedium
1

Fin

m

Fin

R3
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Aggregated Relation
Z

er
o

M
ed

iu
m

1

h

m

Zero LargeMedium
1

Fin

m

Fin

R1

R2

R3
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Simplified Approach

1. Compute the match between the input and the antecedent

membership functions (degree of fulfillment).

2. Clip the corresponding output fuzzy set for each rule by

using the degree of fulfillment.

3. Aggregate output fuzzy sets of all the rules into one fuzzy

set.

This is called the Mamdani or max-min inference method.
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Water Tank Example

Fo  u  t

h

Fin

- If Fin is Zero then h is Zero

- If Fin is Med then h is Med

- If Fin is Large then h is Med

Zero Medium

10

1

3
h

2

Zero LargeMedium

0

1

10020

Fin

40 8060
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Mamdani Inference: Example

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

Fin

m
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Mamdani Inference: Example

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

Fin

m

Given a crisp (numerical) input (Fin).
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If Fin is Zero then . . .

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

Fin

m

Determine the degree of fulfillment (truth) of the first rule.
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If Fin is Zero then h is Zero

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

Fin

m

Clip consequent membership function of the first rule.
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If Fin is Medium then . . .

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

Fin

m

Determine the degree of fulfillment (truth) of the second

rule.
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If Fin is Medium then h is Medium

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

Fin

m

Clip consequent membership function of the second rule.
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Aggregation

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

Fin

m

Combine the result of the two rules (union).
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Defuzzification

conversion of a fuzzy set to a crisp value

y' y

(a) center of gravity

y' y

(b)mean of maxima
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Center-of-Gravity Method

y0 =

F
∑

j=1

µB′(yj)yj

F
∑

j=1

µB′(yj)
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Defuzzification

Zero Medium

0

1

63

h

mZero LargeMedium

0

1

10050

Fin

m

Compute a crisp (numerical) output of the model (center-

of-gravity method).
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Fuzzy System Components

Fuzzification Inference Defuzzification

x1

xn

y1

ym

IF-THEN
Rule 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

1

x1

S M B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

1

xn

S M B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

1

y1

S M B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

1

ym

S M B

IF-THEN
Rule 2

IF-THEN
Rule r-1

IF-THEN
Rule r
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