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. Introduction to artificial neural networks.
. Feedforward neural network.

. Backpropagation.

. Radial basis function network.
. Neuro-fuzzy systems.

. Training and validation aspects.
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Motivation: biological neural networks

e Humans are able to process complex tasks efficiently
(perception, pattern recognition, reasoning, etc.).

e Learning from examples.

e Adaptivity and fault tolerance.

In engineering applications:
e Nonlinear approximation and classification.
e Learning and adaptation from data (black-box models).

e VLSI implementation.
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Biological neuron
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Signal transfer in biological networks
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Learning in neural networks

Biological neural networks:

e Synaptic connections among neurons which simultane-
ously exhibit high activity are strengthened.

Artificial neural networks:

e Mathematical approximation of biological learning:
Hebbian learning (neurocomputing).

e Error minimization, energy minimization
(function approximation, classification, optimization).
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A bit of history

1943  McCulloch & Pits (first model of neurons)
1949 Hebb (learning)

1957  Rosenblatt (perceptron)

1959  Widrow (ADALINE)

1969  Minsky (critique of ADALINE)

1977 Rummelhart (backpropagation learning)
1982 Hopfield (recurrent network)

1989 Cybenko (approximation theory)

1990— Jang et.al. (neuro-fuzzy systems)

1993 Barron (complexity vers. accuracy)
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Artificial neuron
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Activation functions

Purpose: transformation of the input space (squeezing).

Two main types:

1. Projection functions: threshold function, piece-wise lin-
ear function, tangent hyperbolic, sigmoidal function:

o(z) =1/(1 + exp(—22))

2. Kernel functions (radial basis functions):

o(x) = exp (—(X — 0)2/82)
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Activation functions
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Neural Network: Interconnected Neurons
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Feedforward neural network
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Feedforward neural network (cont’d)

1. Activation of hldden—layer neuron j:

Z W; ;T + bh

2. Output of hidden-layer neuron j:

vj =0 (z))

3. Output of output-layer neuron I:

h
Yy = Z w;?lvj + b7
j=1
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Input—Output Mapping

Matrix notation:

7 = X, W"
V = o(Z)
Y = V,W°

with Xb — [X 1] and Vb — [V 1].
Compact formula:

Y = [o(|X 1]W") 1]W?
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Function approximation with neural nets

y = w{ tanh (w?x + b}f) + wq tanh (ng + bg)

Activation (weighted
summation)

Transformation
z through tanh
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Approximation properties of neural nets

[Cybenko, 1989]: A feedforward neural net with at least
one hidden layer can approximate any continuous nonlinear
function RP — R" arbitrarily well, provided that sufficient
number of hidden neurons are available (not constructive).
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Approximation properties of neural nets

[Barron, 1993|: A feedforward neural net with one hidden
layer with sigmoidal activation functions can achieve an
integrated squared error of the order

o)

independently of the dimension of the input space p, where
h denotes the number of hidden neurons.
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Approximation properties of neural nets

[Barron, 1993|: A feedforward neural net with one hidden
layer with sigmoidal activation functions can achieve an
integrated squared error of the order

1
J=0 |-
independently of the dimension of the input space p, where
h denotes the number of hidden neurons.

For a basis function expansion (polynomial, trigonometric
expansion, singleton fuzzy model, etc.) with i terms, in
which only the parameters of the linear combination are

1
J‘O(m)
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Approximation properties: example

1) p =2 (function of two variables):
: _ 1 _ 1
polynomial J = O (W) =0 (E)

neural net J= 0O (%)

—— no difference
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Approximation properties: example

2) p = 10 (function of ten variables) and h = 21:

polynomial J = 0(2121/10) = (.54

neural net J = (9(2—11) = (.048
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Approximation properties: example

2) p = 10 (function of ten variables) and h = 21:

polynomial J = 0(2121/10) = (.54

neural net J = (9(2—11) = (.048

To achieve the same accuracy:

| 1

0G-) = 0)

ho = B0 = by = /b = V2110~ 4 100
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Supervised learning
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Learning in feedforward nets

1. Feedforward computation. From the inputs proceed through
the hidden layers to the output.

7 = X, W', X, =[X 1]
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Learning in feedforward nets

2. Weight adaptation. Compare the net output with the
desired output:
E=D-Y

Adjust the weights such that the following cost function
is minimized:

N
1
5 Z Z e]%j = trace (EET)

k=1 j=1

w = |[Whwe

J(w)
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Optimization methods

Training of neural nets is a nonlinear optimization prob-
lem.

Methods:

e Error backpropagation (first-order gradient).

e Newton methods (second-order gradient).

e Levenberg-Marquardt (second-order gradient).
e Conjugate gradients.

e Variable projection.

e ...and many others
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First-order gradient methods

Update rule for the weights:

Wit = Wpn —apVJ(wp)

with the Jacobian V.J(wy)

0J 0J 0J \ 1
Owy Owy’ Ow)y

v =
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First-order gradient methods
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Second-order gradient methods

J(w) ~ J(wo) + V.J(wo)' (W — w) + %(W — wo)" H(wg)(w — wy)

where H(w() is the Hessian in wy.

Update rule for the weights:

Wil = wpn — H Y wp,)VJ(wy)
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Second-order gradient methods
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Error backpropagation

e First-order gradient method
— not so effective but instructive for the principle.

e Main idea:

—compute errors at the outputs,
—adjust output weights,

— propagate error backwards through the net and adjust
hidden-layer weights.

e Process the data set pattern by pattern
(suitable for both on-line and off-line learning).
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Output-layer weights

v, W’ Neuron Cost function
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Hidden-layer weights

output layer
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Hidden-layer weights

output layer
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Error backpropagation: summary

1. Initialize the weights (at random).

2. Present inputs and desired outputs, calculate actual out-
puts and errors.

3. Compute gradients and update weights.
for the output layer:

W = wj+ avje
and for the hidden layer(s):

h h
Wi = wij + Qg 0}(2]') : Z elw;?l
[

4. Repeat by going to Step 2.
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Radial basis function network

\

D

R. Babuska, Delft Center for Systems and Control, SC4081

35



Radial basis function network

Input—output mapping:

n _
Z 2
1=1

n, ¢; and s; are usually fixed (determined a priori)

w; estimated by least squares

Notice similarity with the singleton fuzzy model.
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Least-squares estimate of weights

Given A;; and a set of input—output data:

{Xpyp) | B =1,2,..., N}

1. Compute the output of the neurons:
2

g ci)”
2o =e i k=12...,N, i=12,....n
The output is linear in the weights:
y = Zw
2. Least-squares estimate:

—1
W — {ZTZ} 7Ty
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Neuro—fuzzy learning

If 1 is A;1 and 29 is A9y then y = by
If ©1 is Ao and x9 is Ay then y = by

normalized
mebership antecedent degree of consequent  weighted
functions connectives fulfillment prameters sum
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Approximation error vs. number of parameters
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Approximation error vs. number of parameters
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Good fit
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Overfitting
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Validation

System: y = f(x) or y(k+1)= f(x(k),u(k))
Model: ¢ = F(x;0) or y(k+1)= F(x(k),u(k);0)

1= [ 160 = Fx)ax

Usually cannot be computed as f(x) is not available,

True criterion:

use available data to numerically compute (1)

® use a validation set

e cross-validation (randomize)
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Validation Data Set

@ training data

+ validation data
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Cross-Validation

e Regularity criterion (for two data sets):

A
RC =

O | —

e leave-one-out method

e v-fold cross-validation
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Some Common Criteria

e Mean squared error (root mean square error):

MSE - %2; (i) — (1))’

e Variance accounted for (VAF):

VAF = 100% - [1 _ var(y - @]

var(y)

e Check the correlation of the residual y — y to u, y and
itself.
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Applications of neural nets

e Black-box modeling of systems from input-output data.

e Reconstruction (estimation) — soft sensors.

e Classification.

e Neurocomputing.

e Neurocontrol.
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