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Considered Settings

• Fuzzy or neural model of the process available

(many of the presented techniques apply to other types

of models as well)

•Based on the model, design a controller (off line)

•Use the model explicitly within a controller

•Model fixed or adaptive

R. Babuška, Delft Center for Systems and Control, SC4081 2



Outline

1. Local design using Takagi–Sugeno models

2. Inverse model control

3. Model-based predictive control

4. Feedback linearization

5. Adaptive control
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TS Model → TS Controller

Model:

If y(k) is Small then x(k + 1) = asx(k) + bsu(k)

If y(k) is Medium then x(k + 1) = amx(k) + bmu(k)

If y(k) is Large then x(k + 1) = alx(k) + blu(k)

Controller:

If y(k) is Small then u(k) = −Lsx(k)

If y(k) is Medium then u(k) = −Lmx(k)

If y(k) is Large then u(k) = −Llx(k)

R. Babuška, Delft Center for Systems and Control, SC4081 4



Design Using a Takagi–Sugeno Model
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Linear design

Linear design

Fuzzy model Fuzzy controller

Linear design
Rule N

Rule 2

Rule 1

Rule N

Rule 2

Rule 1

Apply classical synthesis and analysis methods locally.
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Control Design via Lyapunov Method

Model:

If x(k) is Ωi then xi(k + 1) = Aix(k) +Biu(k)

Controller:

If x(k) is Ωi then ui(k) = −Lix(k)

Stability guaranteed if ∃ P > 0 such that:

(Ai −BiLj)
TP(Ai −BiLj)−P < 0, i, j = 1, . . . ,K
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TS Model is a Polytopic System
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Inverse Control (Feedforward)

u
Inverse model Process

yr

Process model: y(k + 1) = f (x(k), u(k)), where

x(k) = [y(k), . . . , y(k − ny + 1), u(k − 1), . . . , u(k − nu + 1)]T

Controller: u(k) = f−1(x(k), r(k + 1))
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When is Inverse-Model Control Applicable?

1. Process (model) is stable and invertible

2. The inverse model is stable

3. Process model is accurate (enough)

4. Little influence of disturbances

5. In combination with feedback techniques
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How to invert f (·)?

1. Numerically (general solution, but slow):

J(u(k)) = [r(k + 1)− f (x(k), u(k))]2

minimize w.r.t. u(k)

2. Analytically (for some special forms of f (·) only):
• affine in u(k)

• singleton fuzzy model

3. Construct inverse model directly from data
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Inverse of an Affine Model

affine model:

y(k + 1) = g(x(k)) + h(x(k)) · u(k)

express u(k):

u(k) =
y(k + 1)− g(x(k))

h(x(k))

substitute r(k + 1) for y(k + 1)

necessary condition h(x) 6= 0 for all x of interest
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Example: Affine Neural Network
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Example: Affine TS Fuzzy Model

Ri : If y(k) is Ai1 and . . . and y(k − ny + 1) is Ainy and

u(k − 1) is Bi2 and . . . and u(k − nu + 1) is Binu then

yi(k+1) =

ny∑
j=1

aijy(k−j+1) +

nu∑
j=1

biju(k−j+1) + ci,

y(k + 1) =
K∑
i=1

γi(x(k))




ny∑
j=1

aijy(k − j + 1) +

nu∑
j=2

biju(k − j + 1) + ci




+

K∑
i=1

γi(x(k))bi1u(k)

R. Babuška, Delft Center for Systems and Control, SC4081 13



Learning Inverse (Neural) Model
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How to obtain x?

inverse model: u(k) = f−1(x(k), r(k + 1))

1. Use the prediction model: ŷ(k + 1) = f (x̂(k), u(k))

x̂(k) = [ŷ(k), . . . , ŷ(k − ny + 1), u(k − 1), . . . , u(k − nu + 1)]T

Open-loop feedforward control

2. Use measured process output

x(k) = [y(k), . . . , y(k − ny + 1), u(k − 1), . . . , u(k − nu + 1)]T

Open-loop feedback control
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Open-Loop Feedforward Control

Process
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•Always stable (for stable processes)

•No way to compensate for disturbances
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Open-Loop Feedback Control
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•Can to some degree compensate disturbances

•Can become unstable
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Internal Model Control
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Model-Based Predictive Control
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Model-Based Predictive Control

predicted process output ŷ
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Objective Function and Constraints

J =

Hp∑
i=1

‖(r(k + i)− ŷ(k + i))‖2Pi +
Hc∑
i=1

‖(u(k + i− 1))‖2Qi

ŷ(k + 1) = f (x̂(k), u(k))

umin ≤ u ≤ umax

∆umin ≤ ∆u ≤ ∆umax

ymin ≤ y ≤ ymax

∆ymin ≤ ∆y ≤ ∆ymax
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Feedback linearization
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Feedback Linearization (continued)

given affine system: y(k + 1) = g(x(k)) + h(x(k)) · u(k)

express u(k):

u(k) =
y(k + 1)− g(x(k))

h(x(k))

substitute A(q)y(k) + B(q)v(k) for y(k + 1):

u(k) =
A(q)y(k) + B(q)v(k)− g(x(k))

h(x(k))
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Adaptive Control

•Model-based techniques (use explicit process model):

– model reference control through backpropagation

– indirect adaptive control

•Model-free techniques (no explicit model used)

– reinforcement learning
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Model Reference Adaptive Neurocontrol
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Model Reference Adaptive Neurocontrol
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Indirect Adaptive Control
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no only for fuzzy models, but also for affine NNs, etc.
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Reinforcement Learning

• Inspired by principles of human and animal learning.

•No explicit model of the process used.

•No detailed feedback, only reward (or punishment).

•A control strategy can be learnt from scratch.
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