

Outline

Learning paradigms

- 2 Elements of RL
- **3** Algorithms

4 Summary and outlook

Demo: RL for a robot goalkeeper

Learn how to catch ball, using video camera image

ŤUDelft

2 / 49

Why learning?

Learning can find solutions that:

- 1 cannot be found in advance
 - problem too complex
 - (e.g., controlling highly nonlinear systems)
 - problem not fully known beforehand (e.g., robotic exploration of extraterrestrial planets)
- 2 steadily improve
- 3 adapt to time-varying environments

Essential for any intelligent system

RL on the Machine Learning spectrum

Spectrum: Supervised learning

Supervised	Reinforce-	Unsuper-
learning	ment learning	vised learning
more informative feedback		less informative feedback

- For each input sample x, correct output y is known
- Infer input-output relationship $y \approx g(x)$
- Example: neural networks

²U Delft	5 / 49
Spectrum: Unsupervised learni	ng
Supervised learning Reinforce- ment learning	Unsuper- vised learning
more informative feedback	less informative feedback
 Only input samples available – no o 	outputs

- Find patterns in the data
- Example: clustering

Spectrum: Reinforcement learning

- Correct outputs not available, only rewards
- Find optimal control behavior

ŤUDelft

Principle of RL

Learning paradigms

2 Elements of RL

Markov decision process, learning goal, policy Bellman equation, optimality, solutions

3 Algorithms

4 Summary and outlook

- Interact with a system through states and actions
- · Inspired by human and animal learning
- Receive rewards as performance feedback

This lecture: classical RL - discrete states and actions

ŤUDelft

1 Learning paradigms

2 Elements of RL Markov decision process, learning goal, policy Bellman equation, optimality, solutions

3 Algorithms

4 Summary and outlook

Environment and agent

The environment

The environment is modeled by an MDP:

Markov Decision Process (MDP)

An MDP is a tuple $\langle X, U, f, \rho \rangle$ where:

- X is the finite state space
- *U* is the finite action space
- $f: X \times U \rightarrow X$ is the state transition function
- $\rho: X \times U \rightarrow \mathbb{R}$ is the reward function

 $x_{k+1} = f(x_k, u_k)$, with *k* the discrete time $r_k = \rho(x_k, u_k)$

Note: stochastic formulation is possible

The agent is a state feedback controller:

- Learns optimal mapping from states to actions
- Policy $\pi: X \mapsto U$ is the control law

- Cleaning robot in a 1-D world
- Goal: pick up trash (reward +5) or power pack (reward +1)
- After picking up item, episode terminates

Cleaning robot: State & action

- Robot in given state x (cell)
- and takes action *u* (e.g., move right)

- State space $X = \{0, 1, 2, 3, 4, 5\}$
- Action space $U = \{-1, 1\} = \{$ left, right $\}$

Cleaning robot: Transition & reward functions

• Transition function (process behavior):

$$x' = f(x, u) = \begin{cases} x & \text{if } x \text{ is terminal (0 or 5)} \\ x + u & \text{otherwise} \end{cases}$$

• Reward function (immediate performance):

$$r = \rho(x, u) = \begin{cases} 1 & \text{if } x = 1 \text{ and } u = -1 \text{ (powerpack)} \\ 5 & \text{if } x = 4 \text{ and } u = 1 \text{ (trash)} \\ 0 & \text{otherwise} \end{cases}$$

Cleaning robot: Transition & reward

- Robot reaches next state x'
- and receives reward r = quality of transition (here, +5 for collecting trash)

Cleaning robot: Policy

- Policy π : mapping from x to u (state feedback)
- Determines controller behavior

Example:

* action irrelevant in terminal state

Learning goal

Find π that maximizes discounted return: $R^{\pi}(x_0) = \sum_{k=0}^{\infty} \gamma^k r_{k+1} = \sum_{k=0}^{\infty} \gamma^k \rho(x_k, \pi(x_k))$

from any x_0

Discount factor $\gamma \in [0, 1)$:

- induces a "pseudo-horizon" for optimization
- bounds infinite sum
- · encodes increasing uncertainty about the future
- helps convergence of algorithms

Cleaning robot: Return

Assume π always goes right

$$R^{\pi}(2) = \gamma^0 r_1 + \gamma^1 r_2 + \gamma^2 r_3 + \gamma^3 0 + \gamma^4 0 + \dots$$
$$= \gamma^2 \cdot 5$$

Because x_3 is terminal, all remaining rewards are 0

fu Delft	21 / 49
 Elements of RL Markov decision process, learning goal, policy Bellman equation, optimality, solutions 	

TUDelft

Value function

One of these two is used:

• V-function (state value) of policy π :

 $V^{\pi}(x_0) = R^{\pi}(x_0)$

• **Q-function** (state-action value) of policy π :

 $Q^{\pi}(x_0, u_0) = \rho(x_0, u_0) + \gamma R^{\pi}(x_1)$

(return after taking u_0 in x_0 and then following π)

Q-function

$$\begin{aligned} \mathcal{R}^{\pi}(x_{0}) &= \sum_{k=0}^{\infty} \gamma^{k} r_{k+1} = \sum_{k=0}^{\infty} \gamma^{k} \rho(x_{k}, \pi(x_{k})) \\ &= \rho(x_{0}, \pi(x_{0})) + \sum_{k=1}^{\infty} \gamma^{k} \rho(x_{k}, \pi(x_{k})) \\ &= \rho(x_{0}, \pi(x_{0})) + \gamma \sum_{k=0}^{\infty} \gamma^{k} \rho(x_{k+1}, \pi(x_{k+1})) \\ &= \rho(x_{0}, \pi(x_{0})) + \gamma \mathcal{R}^{\pi}(x_{1}) \end{aligned}$$

Q-function makes first action a free variable u_0 :

$$Q^{\pi}(x_0, \boldsymbol{u}_0) = \rho(x_0, \boldsymbol{u}_0) + \gamma \boldsymbol{R}^{\pi}(x_1)$$

ŤUDelft

6 / 49

Bellman equation

• Develop Q-function one step ahead:

$$Q^{\pi}(x_0, u_0) = \rho(x_0, u_0) + \gamma R^{\pi}(x_1)$$

= $\rho(x_0, u_0) + \gamma [\rho(x_1, \pi(x_1)) + \gamma R^{\pi}(x_2)]$
= $\rho(x_0, u_0) + \gamma Q^{\pi}(x_1, \pi(x_1))$

Remember: $x_1 = f(x_0, u_0)$

Bellman equation for Q^{π}

 $Q^{\pi}(x, u) = \rho(x, u) + \gamma Q^{\pi}(f(x, u), \pi(f(x, u)))$

Q-function (cont'd)

$$Q^{\pi}(x_0, u_0) = \rho(x_0, u_0) + \gamma R^{\pi}(x_1)$$

· First action in the sequence independent of policy

• Q-function allows direct derivation of policy

26 .

Optimal solution

TUDelft

• Optimal Q-function:

$${\mathcal{Q}}^* = \max_{\pi} {\mathcal{Q}}^\pi$$

 \Rightarrow Greedy policy in Q^* :

$$\pi^*(x) = \arg\max_u Q^*(x, u)$$

is optimal (achieves maximal returns)

Bellman optimality equation (for Q^*) $Q^*(x, u) = \rho(x, u) + \gamma \max_{u'} Q^*(f(x, u), u')$

Cleaning robot: Optimal solution

Discount factor $\gamma=0.5$

 Learning paradigms
 Elements of RL
 Algorithms Taxonomy Q-learning SARSA
 Summary and auttoold

TU Delft 29	/ 49
Types of algorithms	
By model knowledge	
 Model-based – dynamic programming <i>f</i>, <i>ρ</i> known 	
Model-free – proper reinforcement learning f, ρ unknown, only transition data (x, u, x', r) available	
3 Model-learning RL estimate f and ρ from transition data	

Types of algorithms (cont'd)

By level of interaction

- 1 Offline data collected in advance
- Online controller learns by interacting with the process

By path to optimal solution

- 1 Off-policy find Q^* , use it to compute π^*
- 2 On-policy find Q^{π} , improve π , repeat

TUDelft

Algorithms in this lecture

Online model-free reinforcement learning:

Off-policy	On-policy
Q-learning	SARSA

Both methods are temporal difference (TD) methods

ŤUDelft

Q-learning (cont'd)

4 Finally, make update incremental:

$$Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k \cdot [r_{k+1} + \gamma \max_{u'} Q(x_{k+1}, u') - Q(x_k, u_k)]$$

with learning rate $\alpha_k \in (0, 1]$.

The expression

$$r_{k+1} + \gamma \max_{u'} Q(x_{k+1}, u') - Q(x_k, u_k)$$

is called the temporal difference.

Complete Q-learning algorithm

Q-learning
for every trial do
initialize x_0
repeat for each step <i>k</i>
take action u_k
measure x_{k+1} , receive r_{k+1}
$oldsymbol{Q}(oldsymbol{x}_k,oldsymbol{u}_k) \leftarrow oldsymbol{Q}(oldsymbol{x}_k,oldsymbol{u}_k) + lpha_k\cdot$
$[r_{k+1} + \gamma \max_{u'} Q(x_{k+1}, u') - Q(x_k, u_k)]$
until terminal state
end for

Exploration-exploitation tradeoff

- Essential condition for convergence to *Q**: all (*x*, *u*) pairs must be visited infinitely often
- ⇒ Exploration necessary: sometimes, choose actions randomly
- Exploitation of current knowledge is also necessary: sometimes, choose actions greedily:

 $u_k = rg\max_{\bar{u}} Q(x_k, \bar{u})$

Exploration-exploitation tradeoff crucial for performance of online RL

⁴UDelft 37/-

Exploration-exploitation: *c*-greedy strategy

• Simple solution: *c*-greedy

 $u_{k} = \begin{cases} \arg \max_{\bar{u}} Q(x_{k}, \bar{u}) & \text{with probability } (1 - \varepsilon_{k}) \\ \text{a random action} & \text{with probability } \varepsilon_{k} \end{cases}$

Exploration probability ε_k ∈ (0, 1) is usually decreased over time

Cleaning robot: Q-learning demo

Parameters: $\alpha = 0.2$, $\varepsilon = 0.3$ (constant) $x_0 = 2$ or 3 (randomly)

ŤUDelft

On-policy online RL: SARSA

On-policy: find Q^{π} , improve π , repeat

Similar to Q-learning:

- 1 Take Bellman equation for Q^{π} , at some (x, u): $Q^{\pi}(x, u) = \rho(x, u) + \gamma Q^{\pi}(f(x, u), \pi(f(x, u)))$
- 2 Turn into iterative update: $Q(x, u) \leftarrow \rho(x, u) + \gamma Q(f(x, u), \pi(f(x, u)))$
- 3 Use sample $(x_k, u_k, r_{k+1}, x_{k+1}, u_{k+1})$ at each step k: $Q(x_k, u_k) \leftarrow r_{k+1} + \gamma Q(x_{k+1}, u_{k+1})$ Note: $u_{k+1} = \pi(f(x_k, u_k)), \pi$ = policy being followed

TUDelft

SARSA (cont'd)

4 Make update incremental:

$$Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k \cdot [r_{k+1} + \gamma Q(x_{k+1}, u_{k+1}) - Q(x_k, u_k)]$$

Note that

TUDelft

$$r_{k+1} + \gamma Q(x_{k+1}, u_{k+1}) - Q(x_k, u_k)$$

is the temporal difference here

 $(x_k, u_k, r_{k+1}, x_{k+1}, u_{k+1}) =$ (State, Action, Reward, State, Action) = SARSA

Complete SARSA algorithm

SARSA

for every trial do
initialize x_0 , choose initial action u_0
repeat for each step <i>k</i>
apply u_k , measure x_{k+1} , receive r_{k+1}
choose next action u_{k+1}
$Q(x_k, u_k) \leftarrow Q(x_k, u_k) + lpha_k \cdot$
$[r_{k+1} + \gamma Q(x_{k+1}, u_{k+1}) - Q(x_k, u_k)]$
until terminal state
end for

Exploration-exploitation in SARSA

- For convergence—besides infinite exploration— SARSA requires policy to eventually become greedy
- E.g., *ε*-greedy

 $u_{k} = \begin{cases} \arg \max_{\bar{u}} Q(x_{k}, \bar{u}) & \text{with probability } (1 - \varepsilon_{k}) \\ \text{a random action} & \text{with probability } \varepsilon_{k} \end{cases}$

with $\lim_{k\to\infty} \varepsilon_k = 0$

 Greedy actions ⇒ policy implicitly improved! (Recall on-policy: find Q^π, improve π, repeat)

ŤUDelft

45 / 49

Summary

- Reinforcement learning = optimal, adaptive, model-free control
- Principle: reward signal as performance feedback
- Inspired from human and animal learning, but solid mathematical foundation
- Classical RL: small, discrete X and U (this lecture)

Cleaning robot: SARSA demo

Parameters like Q-learning: $\alpha = 0.2$, $\varepsilon = 0.3$ (constant) $x_0 = 2$ or 3 (randomly)

ŤUDelft

A final look at the algorithms

Off-policy: Q-learning On-policy: SARSA

Typical parameter values:

- γ 0.9 or larger
- α_k under 0.5 or diminishing schedule
- ε_k around 0.1 or diminishing schedule

Next lecture

Still to address:

- Continuous state and action spaces *X*, *U*
- More algorithms: actor-critic, model-learning, etc.

Part II – RL using function approximation

49 / 49