
Reinforcement Learning
Part I: The Classical Setting

Ivan Koryakovskiy Jens Kober Ivo Grondman
Robert Babuška

Knowledge-Based Control Systems

Demo: RL for a robot goalkeeper

Learn how to catch ball, using video camera image

2 / 49

Outline

1 Learning paradigms

2 Elements of RL

3 Algorithms

4 Summary and outlook

3 / 49

Why learning?

Learning can find solutions that:
1 cannot be found in advance

– problem too complex
(e.g., controlling highly nonlinear systems)

– problem not fully known beforehand
(e.g., robotic exploration of extraterrestrial planets)

2 steadily improve
3 adapt to time-varying environments

Essential for any intelligent system

4 / 49



RL on the Machine Learning spectrum

Supervised
learning

Reinforce-
ment learning

Unsuper-
vised learning

more informative feedback less informative feedback

5 / 49

Spectrum: Supervised learning
Supervised

learning
Reinforce-

ment learning
Unsuper-

vised learning

more informative feedback less informative feedback

• For each input sample x , correct output y is known
• Infer input-output relationship y ≈ g(x)
• Example: neural networks

6 / 49

Spectrum: Unsupervised learning
Supervised

learning
Reinforce-

ment learning
Unsuper-

vised learning

more informative feedback less informative feedback

• Only input samples available – no outputs
• Find patterns in the data
• Example: clustering

7 / 49

Spectrum: Reinforcement learning
Supervised

learning
Reinforce-

ment learning
Unsuper-

vised learning

more informative feedback less informative feedback

• Correct outputs not available, only rewards
• Find optimal control behavior

8 / 49



1 Learning paradigms

2 Elements of RL
Markov decision process, learning goal, policy
Bellman equation, optimality, solutions

3 Algorithms

4 Summary and outlook

9 / 49

Principle of RL

Controller Process!?

action u

state x

Reward function
reward r

• Interact with a system through states and actions
• Inspired by human and animal learning
• Receive rewards as performance feedback

10 / 49

Reinforcement learning = Control

Reinforcement learning is about control:
optimal, adaptive, and model-free

Controller Process

action u

state x

Reward function
reward r

This lecture: classical RL – discrete states and actions

11 / 49

1 Learning paradigms

2 Elements of RL
Markov decision process, learning goal, policy
Bellman equation, optimality, solutions

3 Algorithms

4 Summary and outlook

12 / 49



Environment and agent

Controller Process

action u

state x

Reward function
reward r

EnvironmentAgent

13 / 49

The environment

The environment is modeled by an MDP:

Markov Decision Process (MDP)
An MDP is a tuple 〈X ,U, f , ρ〉 where:
• X is the finite state space
• U is the finite action space
• f : X × U → X is the state transition function
• ρ : X × U → R is the reward function

xk+1 = f (xk ,uk ), with k the discrete time
rk = ρ(xk ,uk )

Note: stochastic formulation is possible

14 / 49

The agent

The agent is a state feedback controller:
• Learns optimal mapping from states to actions
• Policy π : X 7→ U is the control law

15 / 49

A simple cleaning robot example

• Cleaning robot in a 1-D world
• Goal: pick up trash (reward +5) or power pack (reward +1)
• After picking up item, episode terminates

16 / 49



Cleaning robot: State & action

• Robot in given state x (cell)
• and takes action u (e.g., move right)

• State space X = {0,1,2,3,4,5}
• Action space U = {−1,1} = {left, right}

17 / 49

Cleaning robot: Transition & reward

• Robot reaches next state x ′

• and receives reward r = quality of transition
(here, +5 for collecting trash)

18 / 49

Cleaning robot: Transition & reward functions

• Transition function (process behavior):

x ′ = f (x ,u) =

{
x if x is terminal (0 or 5)
x + u otherwise

• Reward function (immediate performance):

r = ρ(x ,u) =


1 if x = 1 and u = −1 (powerpack)
5 if x = 4 and u = 1 (trash)
0 otherwise

19 / 49

Cleaning robot: Policy

• Policy π: mapping from x to u (state feedback)
• Determines controller behavior

Example:

π(0) = ∗ π(1) = −1 π(2) = 1
π(3) = 1 π(4) = 1 π(5) = ∗

∗ action irrelevant in terminal state

20 / 49



Learning goal

Find π that maximizes discounted return:
Rπ(x0) =

∞∑
k=0

γk rk+1 =
∞∑

k=0
γkρ(xk , π(xk ))

from any x0

Discount factor γ ∈ [0,1):
• induces a “pseudo-horizon” for optimization
• bounds infinite sum
• encodes increasing uncertainty about the future
• helps convergence of algorithms

21 / 49

Cleaning robot: Return

Assume π always goes right

Rπ(2) = γ0r1 + γ1r2 + γ2r3 + γ30 + γ40 + . . .

= γ2 · 5

Because x3 is terminal, all remaining rewards are 0

22 / 49

1 Learning paradigms

2 Elements of RL
Markov decision process, learning goal, policy
Bellman equation, optimality, solutions

3 Algorithms

4 Summary and outlook

23 / 49

Value function

One of these two is used:
• V-function (state value) of policy π:

Vπ(x0) = Rπ(x0)

• Q-function (state-action value) of policy π:

Qπ(x0,u0) = ρ(x0,u0) + γRπ(x1)

(return after taking u0 in x0 and then following π)

24 / 49



Q-function

Rπ(x0) =
∞∑

k=0

γk rk+1 =
∞∑

k=0

γkρ(xk , π(xk ))

= ρ(x0, π(x0)) +
∞∑

k=1

γkρ(xk , π(xk ))

= ρ(x0, π(x0)) + γ

∞∑
k=0

γkρ(xk+1, π(xk+1))

= ρ(x0, π(x0)) + γRπ(x1)

Q-function makes first action a free variable u0:

Qπ(x0,u0) = ρ(x0,u0) + γRπ(x1)

25 / 49

Q-function (cont’d)

Qπ(x0,u0) = ρ(x0,u0) + γRπ(x1)

• First action in the sequence independent of policy
• Rest of the sequence follows the policy

• Q-function allows direct derivation of policy

26 / 49

Bellman equation

• Develop Q-function one step ahead:

Qπ(x0,u0) = ρ(x0,u0) + γRπ(x1)

= ρ(x0,u0) + γ[ρ(x1, π(x1)) + γRπ(x2)]

= ρ(x0,u0) + γQπ(x1, π(x1))

Remember: x1 = f (x0,u0)

Bellman equation for Qπ

Qπ(x ,u) = ρ(x ,u) + γQπ(f (x ,u), π(f (x ,u)))

27 / 49

Optimal solution

• Optimal Q-function:

Q∗ = max
π

Qπ

⇒ Greedy policy in Q∗:

π∗(x) = arg max
u

Q∗(x ,u)

is optimal (achieves maximal returns)

Bellman optimality equation (for Q∗)

Q∗(x ,u) = ρ(x ,u) + γ max
u′

Q∗(f (x ,u),u′)

28 / 49



Cleaning robot: Optimal solution
Discount factor γ = 0.5

29 / 49

1 Learning paradigms

2 Elements of RL

3 Algorithms
Taxonomy
Q-learning
SARSA

4 Summary and outlook

30 / 49

Types of algorithms

By model knowledge
1 Model-based – dynamic programming

f , ρ known
2 Model-free – proper reinforcement learning

f , ρ unknown, only transition data (x ,u, x ′, r) available
3 Model-learning RL

estimate f and ρ from transition data

31 / 49

Types of algorithms (cont’d)

By level of interaction
1 Offline

data collected in advance
2 Online

controller learns by interacting with the process

By path to optimal solution
1 Off-policy

find Q∗, use it to compute π∗

2 On-policy
find Qπ, improve π, repeat

32 / 49



Algorithms in this lecture

Online model-free reinforcement learning:

Off-policy On-policy

Q-learning SARSA

Both methods are temporal difference (TD) methods

33 / 49

1 Learning paradigms

2 Elements of RL

3 Algorithms
Taxonomy
Q-learning
SARSA

4 Summary and outlook

34 / 49

Off-policy online RL: Q-learning

Off-policy: find Q∗, use it to compute π∗

1 Take Bellman optimality equation at some (x ,u):
Q∗(x ,u) = ρ(x ,u) + γ maxu′ Q∗(f (x ,u),u′)

2 Turn into iterative update:
Q(x ,u)← ρ(x ,u) + γ maxu′ Q(f (x ,u),u′)

3 Instead of model f , ρ, use transition sample
(xk ,uk , xk+1, rk+1) at each step k :

Q(xk ,uk )← rk+1 + γ maxu′ Q(xk+1,u′)
Note: xk+1 = f (xk ,uk ), rk+1 = ρ(xk ,uk )

35 / 49

Q-learning (cont’d)

4 Finally, make update incremental:

Q(xk ,uk )← Q(xk ,uk ) + αk ·
[rk+1 + γ max

u′
Q(xk+1,u′)−Q(xk ,uk )]

with learning rate αk ∈ (0,1].

The expression

rk+1 + γ max
u′

Q(xk+1,u′)−Q(xk ,uk )

is called the temporal difference.

36 / 49



Complete Q-learning algorithm

Q-learning
for every trial do

initialize x0
repeat for each step k

take action uk
measure xk+1, receive rk+1
Q(xk ,uk )← Q(xk ,uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1,u′)−Q(xk ,uk )]

until terminal state
end for

37 / 49

Exploration-exploitation tradeoff

• Essential condition for convergence to Q∗:
all (x ,u) pairs must be visited infinitely often

⇒ Exploration necessary:
sometimes, choose actions randomly

• Exploitation of current knowledge is also necessary:
sometimes, choose actions greedily:

uk = arg max
ū

Q(xk , ū)

Exploration-exploitation tradeoff crucial
for performance of online RL

38 / 49

Exploration-exploitation: ε-greedy strategy

• Simple solution: ε-greedy

uk =

{
arg maxū Q(xk , ū) with probability (1− εk )

a random action with probability εk

• Exploration probability εk ∈ (0,1)
is usually decreased over time

39 / 49

Cleaning robot: Q-learning demo
Parameters: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (randomly)

40 / 49



1 Learning paradigms

2 Elements of RL

3 Algorithms
Taxonomy
Q-learning
SARSA

4 Summary and outlook

41 / 49

On-policy online RL: SARSA

On-policy: find Qπ, improve π, repeat

Similar to Q-learning:
1 Take Bellman equation for Qπ, at some (x ,u):

Qπ(x ,u) = ρ(x ,u) + γQπ(f (x ,u), π(f (x ,u)))

2 Turn into iterative update:
Q(x ,u)← ρ(x ,u) + γQ(f (x ,u), π(f (x ,u)))

3 Use sample (xk ,uk , rk+1, xk+1,uk+1) at each step k :
Q(xk ,uk )← rk+1 + γQ(xk+1,uk+1)

Note: uk+1 = π(f (xk ,uk )), π = policy being followed

42 / 49

SARSA (cont’d)

4 Make update incremental:

Q(xk ,uk )← Q(xk ,uk ) + αk ·
[rk+1 + γQ(xk+1,uk+1)−Q(xk ,uk )]

Note that
rk+1 + γQ(xk+1,uk+1)−Q(xk ,uk )

is the temporal difference here

(xk ,uk , rk+1, xk+1,uk+1) =
(State, Action, Reward, State, Action) = SARSA

43 / 49

Complete SARSA algorithm

SARSA
for every trial do

initialize x0, choose initial action u0
repeat for each step k

apply uk , measure xk+1, receive rk+1
choose next action uk+1
Q(xk ,uk )← Q(xk ,uk ) + αk ·

[rk+1 + γQ(xk+1,uk+1)−Q(xk ,uk )]
until terminal state

end for

44 / 49



Exploration-exploitation in SARSA

• For convergence—besides infinite exploration—
SARSA requires policy to eventually become greedy

• E.g., ε-greedy

uk =

{
arg maxū Q(xk , ū) with probability (1− εk )

a random action with probability εk

with limk→∞ εk = 0

• Greedy actions⇒ policy implicitly improved!
(Recall on-policy: find Qπ, improve π, repeat)

45 / 49

Cleaning robot: SARSA demo
Parameters like Q-learning: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (randomly)

46 / 49

Summary

• Reinforcement learning =
optimal, adaptive, model-free control

• Principle: reward signal as performance feedback
• Inspired from human and animal learning,

but solid mathematical foundation
• Classical RL: small, discrete X and U (this lecture)

47 / 49

A final look at the algorithms

Off-policy: Q-learning
On-policy: SARSA

Typical parameter values:
γ 0.9 or larger

αk under 0.5 or diminishing schedule
εk around 0.1 or diminishing schedule

48 / 49



Next lecture

Still to address:
• Continuous state and action spaces X , U
• More algorithms: actor-critic, model-learning, etc.

Part II – RL using function approximation

49 / 49


	Learning paradigms
	Elements of RL
	Markov decision process, learning goal, policy
	Bellman equation, optimality, solutions

	Algorithms
	Taxonomy
	Q-learning
	SARSA

	Summary and outlook
	Summary
	Outlook


