Demo: RL for a robot goalkeeper

Learn how to catch ball, using video camera image

Reinforcement Learning
Part I: The Classical Setting

T

Ivan Koryakovskiy Jens Kober Ivo Grondman
Robert Babuska

Knowledge-Based Control Systems

%
De TUDelft 2/49

Outline Why learning?

Learning can find solutions that:
@ cannot be found in advance
— problem too complex

@ Learning paradigms

@ Elements of RL (e.g., controlling highly nonlinear systems)
— problem not fully known beforehand
9 Algorithms (e.g., robotic exploration of extraterrestrial planets)
® steadily improve
@ Summary and outlook @ adapt to time-varying environments

Essential for any intelligent system

x e
TUDelft 3/49 TUDelft 4/49

RL on the Machine Learning spectrum Spectrum: Supervised learning

Supervised Reinforce- Unsuper-
learning ment learning vised learning
k

“more informative feedback less informative feedbacl

Suporvised o—— Unsuper- « For each input sample x, correct output y is known
learning ment learning vised learning « Infer input-output relationship y ~ g(x)

o Example: neural networks

“more informative feedback less informative feedback

% %
TUDelft 5/49 TUDelft 6/49

Spectrum: Unsupervised learning Spectrum: Reinforcement learning
Supervised Reinforce- Unsuper- Supervised Reinforce- Unsuper-
learning ment learning vised learning learning ment learning vised learning
“more informative feedback less informative feedback “more informative feedback less informative feedbalck>

» Only input samples available — no outputs
» Find patterns in the data
« Example: clustering

Yy

« Correct outputs not available, only rewards
¢ Find optimal control behavior

xX v

.3 .3
TUDelft 7749 TUDelft 8/49

Principle of RL

® Elements of RL
Markov decision process, learning goal, policy
Bellman equation, optimality, solutions

e Interact with a system through states and actions
¢ Inspired by human and animal learning
o Receive rewards as performance feedback

% %
TUDelft 9/49 TUDelft 10749

Reinforcement learning = Control

Reinforcement learning is about control:

optimal, adaptive, and model-free
P P @® Elements of RL

Markov decision process, learning goal, policy

state x

This lecture: classical RL — discrete states and actions

.3 .3
TUDelft 11749 TUDelft 12/49

Environment and agent The environment

The environment is modeled by an MDP:

] Reward function

Markov Decision Process (MDP)
\ An MDP is a tuple (X, U, f, p) where:
E « X is the finite state space

E « U is the finite action space

o f: X x U— X is the state transition function
e p: X x U — Ris the reward function
Xk+1 = f(Xk, Uk), with k the discrete time
———————————————————————————— A LR re = p(Xk, Uk)

Note: stochastic formulation is possible

% %
TUDelft 13/49 TUDelft 14749

The agent A simple cleaning robot example
| — |
The agent is a state feedback controller: T
« Learns optimal mapping from states to actions p;’e“’éir C'fgg";rt‘g trash

e Policy m : X — U is the control law _ .
¢ Cleaning robot in a 1-D world

o Goal: pick up trash (reward +5) or power pack (reward +1)
« After picking up item, episode terminates

e e
TUDelft 15749 TUDelft 16/49

Cleaning robot: State & action

action u

\j

O+€.

state x

Robot in given state x (cell)
and takes action u (e.g., move right)

Cleaning robot: Transition & reward functions

1

0

State space X ={0,1,2,3,4,5}
Action space U = {—1,1} = {left, right}

%
TUDelft 17749

0 0

0

5

«— «— «——
x=0 1 2 3 4 5
¢ Transition function (process behavior):
X if x is terminal (0 or 5)

x’:f(x,u):{

X +u otherwise

» Reward function (immediate performance):

r=p(x,u) =

2
TUDelft 19/49

1 if x=1and u= —1 (powerpack)

5 ifx=4and u=1 (trash)

0 otherwise

Cleaning robot: Transition & reward

reward r=5

= OO0

next state x’

« Robot reaches next state x’

« and receives reward r = quality of transition
(here, 45 for collecting trash)

%
TUDelft 18/49

Cleaning robot: Policy

¢ Policy 7: mapping from x to u (state feedback)
» Determines controller behavior

Example:
1
= *“*\‘*\‘*’|E
x=0 1 2 3 4 5
w(0) = * m(1) = -1 m(2) =1
7(3) =1 w(4) =1 7(5) = *

* action irrelevant in terminal state

.3
TUDelft 20/49

Learning goal Cleaning robot: Return

Find 7 that maximizes digocounted retuoron: ¢ ¢ ¢
R™(%0) = 3 Y1 = 3 ¥ p(Xk, m(xk)) T O——> —_> —
k=0 k=0

from any xg X,=2

Discount factor v € [0, 1): Assume 7 always goes right

e induces a “pseudo-horizon” for optimization R™(2) =°r +7'r + 42 + 420 +4*0 + . ..
 bounds infinite sum — 2.5

e encodes increasing uncertainty about the future

« helps convergence of algorithms Because x3 is terminal, all remaining rewards are 0

% %
TUDelft 21/49 TUDelft 22/49

Value function

One of these two is used:

@ Elements of RL o V-function (state value) of policy =:

Bellman equation, optimality, solutions V™ (x0) = R™(Xo)

o Q-function (state-action value) of policy =:
Q" (X0, Uo) = p(Xo, Uo) +vA™(x1)

(return after taking ug in X and then following)

.3 .3
TUDelft 23/49 TUDelft 24749

Q-function Q-function (cont’d)

o0 o0
R™(xo) = Z’)’krk-H = Z’ykp(xk, 7(Xk)) Q" (x0, Uo) = p(Xo, Uo) +vR"(x1)
k=0 k=0
= p(X0, m(X0)) + Z K o(Xk, 7(Xk)) « First action in the sequence independent of policy
k=1 « Rest of the sequence follows the policy

r,=0 =0 r=5

= P07 00)) £ 7S A0tk 7 (1) e T
& L T,
— o0, 7(x0)) + 1A (x) T O — _ﬁD

X,=2

Q-function makes first action a free variable uy: o .
« Q-function allows direct derivation of policy

Q" (xg, Up) = p(Xo, Uo) + YR"(x1)

Bellman equation Optimal solution

» Develop Q-function one step ahead: ¢ Optimal Q-function:

Q" (X0, Up) = p(Xo, Up) +YR"(x1) Q" =maxQ

= p(Xo, Uo) + V[p(x1,7(x1)) + YA (x2)] — Greedy policy in Q*:

= p(Xo, Up) + Q" (x1,7(x1)) 7*(x) = argmax Q*(x, u)
u

Remember: x; = f(Xp, Up))) _ _
is optimal (achieves maximal returns)

Bellman equation for Q™
Q"(x, u) = p(x, u) + Q" (f(x, u), 7(f(x, u)))

Bellman optimality equation (for Q*)
Q*(x,u) = p(x,u) +~ max Q*(f(x, u),u)

e
'i"u Delft 27749 TUDelft 28/49

Cleaning robot: Optimal solution

Discount factor v = 0.5

® Algorithms
Taxonomy
Q-learning
SARSA

% %
TUDelft 29/49 TUDelft 30/49

Types of algorithms Types of algorithms (cont’d)
By level of interaction
By model knowledge LA :
data collected in advance

@ Model-based — dynamic programming
f, p known
® Model-free — proper reinforcement learning
f, p unknown, only transition data (x, u, x’, r) available

® Online
controller learns by interacting with the process

® Model-learning RL By path to optimal solution
estimate f and p from transition data @ Off-policy
find Q*, use it to compute 7*
® On-policy

find Q™, improve 7, repeat

x e
TUDelft 31/49 TUDelft 32/49

Algorithms in this lecture

Online model-free reinforcement learning:

Off-policy

On-policy

Q-learning

SARSA

Both methods are temporal difference (TD) methods

%
TUDelft 33/49

Off-policy online RL: Q-learning

Off-policy: find O, use it to compute 7*

@ Take Bellman optimality equation at some (x, u):
Q*(x, u) = p(x, u) +ymaxy Q*(f(x, u), u’)

® Turn into iterative update:

O(Xa U) — p(Xa U) + 7y maXy Q(f(X7 U), Ul)

® Instead of model f, p, use transition sample

(Xk, Uk, Xk+1, k1) at each step k:

Q(Xk, Uk) < k1 +ymaxy Q(Xxy1,U")

Note: Xx1 = f(Xk, Uk), k1 = p(Xk, Uk)

2
TUDelft 35/49

@ Algorithms

Q-learning

%
TUDelft 34749

Q-learning (cont’d)

@ Finally, make update incremental:

Q(Xk, Uk) + QX Ux) +
[Fk1 + max Q(Xk41,U') — Q(Xk, Uk)]

with learning rate ay € (0, 1].

The expression

Tkt +ymax Q(Xk41, U") = QX U)

is called the temporal difference.

2
TUDelft 36/49

Complete Q-learning algorithm Exploration-exploitation tradeoff

» Essential condition for convergence to Q*:

Q-learning | all (x, u) pairs must be visited infinitely often
for .e\llgr?(trial do = Exploration necessary:
initialize xo sometimes, choose actions randomly

repeat for each step k
take action vy
measure Xy 1, receive ri 1
Q04) = Qxi, i) + e ux = argmax Q(x, 0)
(M1 + max Q(Xk41, U') — Q(Xk, k)] 0]
until terminal state
end for

o Exploitation of current knowledge is also necessary:
sometimes, choose actions greedily:

Exploration-exploitation tradeoff crucial
for performance of online RL

% %
TUDelft 37749 TUDelft 38/49

Exploration-exploitation: s-greedy strategy Cleaning robot: Q-learning demo

Parameters: a = 0.2, ¢ = 0.3 (constant)
Xp = 2 or 3 (randomly)

« Simple solution: =-greedy Qiearning, tral 8, step 3
—|—|— B

argmaxg Q(xx, u) with probability (1 —)
a random action with probability e,

» Exploration probability ¢, € (0,1) s
is usually decreased over time 1

e e
TUDelft 39/49 TUDelft 40/49

On-policy online RL: SARSA
On-policy: find Q7, improve =, repeat

Similar to Q-learning:

@ Take Bellman equation for Q™, at some (x, u):
Q™ (x,u) = p(x,u) +yQ"(f(x,u), m(f(x,u
© Algorithms (X, U) = p(x, u) + 7 Q(F(x, u), 7(f(x, u)))
® Turn into iterative update:
SARSA Q(X7 U) <_p(X7 U)—l—’yQ(f(X, U),Tl'(f(X, U)))
@ Use sample (xk, Uk, rk+1, Xk+1, Uc+1) at each step k:
Q(Xk, Uk) < Ikt + QX1 Ugg1)
Note: ux.1 = m(f(xk, Ux)), ™ = policy being followed

% %
TUDelft 41/49 TUDelft 42/49

SARSA (contd) Complete SARSA algorithm

@ Make update incremental: SARSA

for every trial do
QUxic, i) 4= Q. L) + e initialize xo, choose initial action ug
[kt + Y Q(Xkt15 Uk1) — Q(Xk, Uk)] repeat for each step k
apply Uy, measure Xy 1, receive ri..1

Note that choose next action uk1
k1 + 7Y Q(Xkq1, Uk1) — Q(Xk, Uk) QX Uk) — Q(Xk, Uk) + auk-
is the temporal difference here [kt +7YQ(Xk+1, Uk+1) — Q(Xk, Uk)]
until terminal state
(Xk> Uks k15 Xk1, Uk 1) = end for

(State, Action, Reward, State, Action) = SARSA

.3 .3
TUDelft 43749 TUDelft 44749

Exploration-exploitation in SARSA Cleaning robot: SARSA demo

Parameters like Q-learning: a = 0.2, ¢ = 0.3 (constant)
» For convergence—besides infinite exploration— Xo = 2 or 3 (randomly)
SARSA requires policy to eventually become greedy

SARSA, trial 8, step 3

—|—|— B

e E.g., e-greedy

arg maxg Q(xx, u) with probability (1 — k)
a random action with probability e, 2

with limy o0 ex = 0 1

» Greedy actions = policy implicitly improved! s ; B
(Recall on-policy: find Q™, improve 7, repeat) ——aq]

% %
TUDelft 45/49 TUDelft 46/49

Summary A final look at the algorithms

Off-policy: Q-learning

« Reinforcement learning = On-policy: SARSA
optimal, adaptive, model-free control

¢ Principle: reward signal as performance feedback Typical parameter values:

¢ Inspired from human and animal learning, ~ 0.9 or larger

but solid mathematical foundation

. a under 0.5 or diminishing schedule
Classical RL: small, discrete X and U (this lecture)

<, around 0.1 or diminishing schedule

x e
TUDelft 471749 TUDelft 48/49

Next lecture

Still to address:
¢ Continuous state and action spaces X, U
» More algorithms: actor-critic, model-learning, etc.

Part Il — RL using function approximation

1
TUDelft 49/49

	Learning paradigms
	Elements of RL
	Markov decision process, learning goal, policy
	Bellman equation, optimality, solutions

	Algorithms
	Taxonomy
	Q-learning
	SARSA

	Summary and outlook
	Summary
	Outlook

