

TUDelft

Backward pass: calculate $\nabla_W J$ and use it in an optimization algorithm to iteratively update the weights of the network to minimize the loss J.

Outline

Last lecture:

- 1 Introduction to artificial neural networks
- 2 Simple networks & approximation properties
- **3** Deep Learning
- Optimization

This lecture:

- 1 Regularization & Validation
- 2 Specialized network architectures
- 3 Beyond supervised learning
- 4 Examples

TUDelft

Validation

System:
$$y = f(\mathbf{x})$$
 or $y(k+1) = f(\mathbf{x}(k), \mathbf{u}(k))$
Model: $\hat{y} = F(\mathbf{x}; \theta)$ or $\hat{y}(k+1) = F(\mathbf{x}(k), \mathbf{u}(k); \theta)$

True criterion:

$$I = \int_{X} \|f(\mathbf{x}) - F(\mathbf{x})\| d\mathbf{x}$$
 (1)

Usually cannot be computed as $f(\mathbf{x})$ is not available, use available data to numerically approximate (1)

- use a validation set
- cross-validation (randomize)

11 / 49

Cross-Validation

• Regularity criterion (for two data sets):

$$RC = \frac{1}{2} \left[\frac{1}{N_A} \sum_{i=1}^{N_A} (y^A(i) - \hat{y}^A_B(i))^2 + \frac{1}{N_B} \sum_{i=1}^{N_B} (y^B(i) - \hat{y}^B_A(i))^2 \right]$$

• v-fold cross-validation

13 / 49

Test set

ŤUDelft

The *validation* set is used to select the right **hyper-parameters**.

- Structure of the network
- Cost function
- Optimization parameters
- ...

What might go wrong?

Use a separate *test* set to verify the hyper-parameters have not been over-fitted to the validation set.

Some Common Criteria

• Mean squared error (root mean square error):

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y(i) - \hat{y}(i))^2$$

• Variance accounted for (VAF):

$$\mathsf{VAF} = 100\% \cdot \left[1 - \frac{\mathsf{var}(y - \hat{y})}{\mathsf{var}(y)}\right]$$

• Check the correlation of the residual $y - \hat{y}$ to u, y and itself.

ŤUDelft

Regularization

Regularization: Any strategy that attempts to improve the *test* performance, but not the *training* performance

- Limit model capacity (smaller network)
- Early stopping of the optimization algorithm
- Penalizing large weights (1 or 2 norm)
- Ensembles (dropout)
-

Weight penalties

Cost function: $J_r(y, t, \mathbf{w}) = J^*(y, t) + \lambda ||\mathbf{w}||_p^p$

Dropout

Practical approximation of an automatic ensemble method. During training, drop out units (neurons) with probability p. During testing use all units, multiply weights by (1 - p).

Model ensembles

What if we train multiple models instead of one?

For k models, where the errors made are zero mean, normally distributed, with variance $v = \mathbb{E}[\epsilon_i^2]$, covariance $c = \mathbb{E}[\epsilon_i \epsilon_j]$. The variance of the ensemble is:

$$\mathbb{E}\left[\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right)^{2}\right] = \frac{1}{k^{2}}\mathbb{E}\left[\sum_{i}\left(\epsilon_{i}^{2} + \sum_{j\neq i}\epsilon_{i}\epsilon_{j}\right)\right] = \frac{1}{k}\nu + \frac{k-1}{k}c_{i}$$

When the errors are not fully correlated (c < v), the variance will reduce.

ŤUDelft

More data

The best regularization strategy is more real data

Spend time on getting a dataset and think about the biases it contains.

Data augmentation

Sometimes existing data can be transformed to get more data. Noise can be added to inputs, weights, outputs (what do these do, respectively?) Make noise realistic.

Prior knowledge for simplification Use prior knowledge to limit the model search space Sacrifice some potential accuracy to gain a lot of simplicity Example from control theory Reality: y(t) = f(x, u, t), $\dot{x} = g(x, u, t)$ Usual LTI approximation: y = Cx + Du, $\dot{x} = Ax + Bu$

<section-header><text><list-item><text><list-item><list-item><list-item><list-item>

Neural network analog

Lets assume y(t) = f(x(t), t) and x(t) = g(x(t-1), u(t), t):

RNN training: Back Propagation Through Time (BPTT)

- **1** Make *n* copies of the network, calculate y_1, \ldots, y_n
- 2 Start at time step *n* and propagate the loss backwards through the unrolled networks
- **3** Update the weights based on the average gradient of the network copies: $\nabla_w J = \frac{1}{n} \sum_{i=1}^n \nabla_{w_i} J$

Weight sharing: temporal invariance

The exploding / vanishing gradients problem

Scalar case with no input: $x_n = w^n \cdot x_0$ For $w < 1, x^n \to 0$, for $w > 1, x^n \to \infty$. This makes it hard to learn long term dependencies.

TUDelft

Gating

One more network component: Element-wise multiplication of activations \otimes

Convolution

- Instead of thinking of copying parts of the network over the inputs, we can think of the same operation as sliding a network part over the input.
- Step 1: **Convolution**: S(i,j) = (I * K)(i,j) = $\sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$

ŤUDelft

From SL to RL

So far: get a database of inputs x and target outputs t, minimize some loss between network predictions $y(x, \theta)$ and the targets t by adapting the network parameters θ :

From SL to RL

DQN example: get a database of inputs x and target outputs t, minimize some loss between network predictions $Q(x, \theta)$ and the targets t by adapting the network parameters θ :

- Data {x, u, x', r} is collected on-line by following the exploration policy and stored in a buffer.
- t(x, a) = r + γ max_a Q(x', θ⁻): target network with parameters θ⁻ that slowly track θ for stability.

RL with function approximation

Global function approximation makes things trickier but potentially more useful, especially for high-dimensional state-spaces.

Ť	U		~	44
	U	D	е	ШU

Additional training criteria

Previous lecture: data clustered around a (or some) low dimensional manifold(s) embedded in the high dimensional input space.

Additional training criteria - auto encoders • Unsupervised Learning (UL): find some structure in input data without extra information(e.g. clustering). • Auto Encoders (AE) do this by reconstructing their input (t = x). $x \in \mathbb{R}^n$

ŤUDelft

ŤUDelft

Applications of neural nets

- Black-box modeling of systems from input-output data.
- Reconstruction (estimation) soft sensors.
- Classification.
- Neurocomputing.
- Neurocontrol.

ŤUDelft

TUDelft

²S. Levine, C. Finn, T. Darrell, and P. Abbeel (2016). "End-to-end training of deep visuomotor policies". In: *Journal of Machine Learning Research* 17.39, pp. 1–40

Summary

(Over-)fitting training data can be easy, we want to generalize to new data.

- Use separate **validation** and **test** data-sets to measure generalization performance.
- Use regularization strategies to prevent over-fitting.
- Use prior knowledge to make specific network structures that limit the model search space and the number of weights needed (e.g. RNN, CNN).
- Be aware of the biases and accidental regularities contained in the dataset.

TUDelft

19 / 49

