Artificial Neural Networks 2

Tim de Bruin Robert Babuska
t.d.debruin@tudelft.nl

Knowledge-Based Control Systems (SC42050)
Cognitive Robotics

3mE, Delft University of Technology, The Netherlands

07-03-2018

3
TUDelft

Recap artificial neural networks part 1

Backward pass: calculate VyJ and use it in an optimization
algorithm to iteratively update the weights of the network to minimize
the loss J.

Loss function target output

Jy.b)

network output

7
TUDelft 3/49

Recap artificial neural networks part 1

Foward pass:
|nput\

<_output/'y = f(X' W»)\

weights

network structure

x
TUDelft 2/49

Outline

Last lecture:
@ Introduction to artificial neural networks
® Simple networks & approximation properties
® Deep Learning
® Optimization

This lecture:
@ Regularization & Validation
® Specialized network architectures
©® Beyond supervised learning

® Examples

7
TUDelft 4y/aa9

Outline Approximation error vs. number of parameters

<

@ Regularization & Validation

approximation error

training data

number of parameters

3 % /
TUDelft 5/49 TUDelft 6/49

Approximation error vs. number of parameters Underfitting
4 A
J y
°

N
3
Y
=
g
3
S
=
3
§

training data

number of parameters X

7 7
TUDelft 7/49 TUDelft 8/49

Good fit

5
TUDelft 9 /49

Validation

System: y = f(x) or y(k+1)=7f(x(k),u(k))
Model: y=F(x;0) or y(k+1)=F(x(k),u(k);0)

True criterion:

1= [1F() - F(x)ldx M

Usually cannot be computed as f(x) is not available,
use available data to numerically approximate (1)

e use a validation set

e cross-validation (randomize)

7
TUDelft L1480

Overfitting

A

x
TUDelft 10/ 49

Validation Data Set

@ training data

h% =+ validation data

7
TUDelft L2y/40

Cross-Validation

* Regularity criterion (for two data sets):

RC -1 [i %A:(y/*(f) — AR+ %Bi(y‘*m —?BU)V]
2| Naimd 5 Ne iH A

e v-fold cross-validation

x
TUDelft 13/ 49

Test set

The validation set is used to select the right hyper-parameters.

Structure of the network

Cost function

Optimization parameters

What might go wrong?

Use a separate test set to verify the hyper-parameters have not been
over-fitted to the validation set.

7
TUDelft Loy/4a9

Some Common Criteria

* Mean squared error (root mean square error):
L& e
MSE = &2, (y(1) = 9(7))
i=1
¢ Variance accounted for (VAF):

VAF = 100% - [1 _ M]

var(y)

e Check the correlation of the residual y — y to u, y and itself.

x
TUDelft 14 / 49

Regularization

Regularization: Any strategy that attempts to improve the test
performance, but not the training performance

Limit model capacity (smaller network)

Early stopping of the optimization algorithm

Penalizing large weights (1 or 2 norm)

Ensembles (dropout)

7
TUDelft Loy/4a9

Weight penalties

Cost function: J,(y, t,w) = J*(y, t) + A||w]|5

w2

o p=1: [': Leads to
O-weights (sparsity,
feature selection)

o p=2: [?: Leads to
small weights

w1
Demo - Overfitting

Demo - L1 regularization

Demo - L2 regularization

3
TUDelft

17 / 49

Dropout

Practical approximation of an automatic ensemble method. During

training, drop out units (neurons) with probability p. During testing use

all units, multiply weights by (1 - p).

y2 y3 yl y2 y3 yl y2 y3

yl
Q
\ e

5
x2

x1 x1

randomly drop units during each training update, creating a To use the network, include all units

new network (with shared parameters) every time. but scale weights.

<3
TUDelft

19 / 49

Model ensembles

What if we train multiple models instead of one?

For k models, where the errors made are zero mean, normally
distributed, with variance v = E[¢?], covariance c = E[¢;¢;]. The
variance of the ensemble is:

2
1 1 1 k-1
E (;Z[:E,) = EE Z(E%"‘ZG,‘CJ’) = ZV'F P C

i J#i

When the errors are not fully correlated (¢ < v), the variance will reduce.

x
TUDelft 18/ 49

More data

The best regularization strategy is more real data

Spend time on getting a dataset and think about the biases it contains.

7
TUDelft 20§/449

https://tinyurl.com/jbsdtro
https://tinyurl.com/zav85ql
https://tinyurl.com/zvsbodq

Data augmentation

Sometimes existing data can be transformed to get more data.
Noise can be added to inputs, weights, outputs (what do these do,
respectively?) Make noise realistic.

/g&.&%

e c\’sﬁ

Overfitting < .
() o
—>» O &,
P/\ ’
" Qverfitting " " Qverfitting " " Qverfitting "
fupelft 21)48

Prior knowledge for simplification

Use prior knowledge to limit the model search space

Sacrifice some potential accuracy to gain a lot of simplicity

Example from control theory
Reality: y(t)=f(x,u,t), x=g(x,u,t)

Usual LTI approximation: y = Cx+ Du, x=Ax+ Bu

7
TUDelft 23J/440

Outline

@ Specialized structures
Recurrent Neural Networks
Convolutional Neural Networks

x
TUDelft 22/ 49

Neural network analog

Predict y; given Ye_p, .oy Vi-1, Ut—n, .., Ut

Strategy so far:

Feedforward
network

7
TUDelft 25/ 49

Neural network analog

Lets assume y(t) = f(x(t),t) and x(t) = g(x(t - 1), u(t), t):

3
TUDelft 25/ 49

RNN training: Back Propagation Through Time (BPTT)

@ Make n copies of the network, calculate yi,...,y,

@ Start at time step n and propagate the loss backwards through the
unrolled networks

©® Update the weights based on the average gradient of the network
copies: VyJ =137, v,.J

n

+th-1J +VY\V1 J +VYHJ +VytJ
Y Yea Ye3 Ye2 Ye1 Yt

7
TUDelft 27/449

Weight sharing: temporal invariance

Lets add temporal invariance:

y(t) = f(x(t)) and x(t) = g(x(t - 1), u(t));
W1 =W2 =W3 =Wg =W =W

Yia Y3 Y2 Yi1 Ye Yt
Recurrent
Neural
A& Network
h (RNN)

Utz Ut-2

Significant reduction in the number of parameters w

fupeit 2) 4
The exploding / vanishing gradients problem
Scalar case with no input: x, = w" - xp
For w<1,x" -0, for w>1,x" - oo.
This makes it hard to learn long term dependencies.
RNN some memory control?
X YeX Je
Hidden 5
1 2 3 a4 s Time 1 2 3 a4 s
fupeit 28/ 49

Gating

One more network component:
Element-wise multiplication of activations ®

Example: LSTM memory cell

>=/ output gateT
/\f)—

forget

gate 4
—@\

\()input gate
/ J
/&\ emory cell

3
TUDelft 29/ 49

Weight sharing: spatial equivariance

WIS W Vo Wi

We want spatial invariance /
equivariance.

o Share pieces of network \\\
(eg our 6 feature detector). \

e Copy the part of the network
across the input space, enforce
that the weights remain equal.

W] =Wy=W3=W4=W

7
TUDelft SLy/A40

Weight sharing: spatial equivariance

How to process grid like information (eg. images)? So far:

6 6

g ?‘!t"'é«‘ (o <<entirely different!->

‘i\ NN
AN S\i\k\‘\
N\

AN

"Iil\'m
1

5
TUDelft 30 / 49

Convolution

e Instead of thinking of copying
parts of the network over the
inputs, we can think of the
same operation as sliding a
network part over the input.

e Step 1: Convolution:
S(i.J) = (1= K)(i.j) = et
Zm Zn I(m7 H)K(I - m:j - n)

y <K (Kernel)

7
TUDelft 32§/449

Convolutional layer

e Step 1: Convolution:
S(ig) = (< K)(i.j) = E)C 1R
Ym2nl(mn)K(i-m,j-n) A

e Step 2: Detector stage: S (feature map) —>
nonlinearities on top of the |
feature map

nonlinearities —>

I (Input)

What if we want /invariance?

-<—K (Kernel)

5
TUDelft 33 /49

Outline

© (Semi) Unsupervised Learning & Reinforcement Learning

7
TUDelft 35 /49

Pooling

pooling —>

e Step 1: Convolution:
S(i.j) = (1« K)(i.J) = |
Zman(m’n)K(i_mv.j_n) /

e Step 2: Detector stage:
nonlinearities on top of the
feature map

nonlinearities —>

S (feature map) —>|

» Step 3 (optional) Pooling: I (Input)
Take some function (eg max)
of an area

<<—K (Kernel)

x
TUDelft 34 /49

NN training: so far, we have seen supervised learning

Reinforcement Unsupervised
learning learning

less informative feedback

Supervised
learning

more informative feedback

7
TUDelft 36/49

From SL to RL

So far: get a database of inputs x and target outputs t , minimize some
loss between network predictions y(x,6) and the targets t by adapting
the network parameters 6:

y € R™

x
TUDelft 37/ 49

From SL to RL

DQN example: get a database of inputs x and target outputs t ,
minimize some loss between network predictions Q(x,) and the targets
t by adapting the network parameters 0:

o Data {x, u, X', r} is collected on-line by following the exploration
policy and stored in a buffer.

o t(x,a) =r+ymax, Q(x’,07): target network with parameters 6~
that slowly track 6 for stability.

Qe R

7
TUDelft 39/49

RL with function approximation

Didn't we do this last week?

Approximating Over the State Space

¢ Typically: basis functions

b1, én: X —[0,1]

® Usually normalized: 3; ¢i(x) =1

e E.g., fuzzy approximation, RBF network approximation

fupeire 1650

Global function approximation makes things trickier but potentially
more useful, especially for high-dimensional state-spaces.

5
TUDelft 38 / 49

Additional training criteria

Inputs x are often much easier to

obtain than targets t.
MORE
o For deep networks, many of TASK
the earlier layers perform very SPECIFIC
general functions (e.g. edge
detection).
e These layers can be trained on MORE
: . GENERAL
different tasks for which there
is data.

7
TUDelft HOJ/A49

Additional training criteria

Previous lecture: data clustered around a (or some) low dimensional
manifold(s) embedded in the high dimensional input space.

space of all

< ? / images

faces
manifold

1

Can we learn a mapping to this manifold with only input data x?

ID. P. Kingma and M. Welling (2013). “Auto-encoding variational bayes”. |n: arXiv preprint arXiv:1312.60114

x
TUDelft 41/ 49

Additional training criteria: regularization and optimization

Auxiliary training objectives can be
added

e Because they are easier and
allow the optimization to make
faster initial progress.

e To force the network to keep

more generic features, as a
regularization technique.

7
TUDelft 43l/440

Additional training criteria - auto encoders

x>

> | —M

* Unsupervised Learning (UL): [
find some structure in input
data without extra
information(e.g. clustering). compressed ———— @M

representation
* Auto Encoders (AE) do this by %

reconstructing their input l ?]
(t=x). l |
x € R"

[

x
TUDelft 42 /49

Generative models

Auto-Encoders consist of

two parts: K ? R"
e Encoder: compresses \ \
. decoder ?
the input, useful feature ‘
hierarchy fOI’ later Am Compressed
R representation

decompresses the input,
can be used as a <€ RN
generative model.

supervised tasks. :F
¢ Decoder: encoder~|: I
\

7
TUDelft aay/ae0

Outline

@ Examples

3
TUDelft 45/ 49

Example: object recognition

) T T
DELFTROBOTICS) water 0.91
pencil cup 1.00ct tape 0.62

]
TUDelft B °'9§

.) duct tape 0.94
Robotics Institute P hcoks .40

outlst plugs 0.60

winner 2016

Demo - movie

7
TUDelft 409

Applications of neural nets

Black-box modeling of systems from input-output data.

Reconstruction (estimation) — soft sensors.

Classification.

Neurocomputing.

e Neurocontrol.

3
TUDelft 46 / 49

Example: control from images

2g, Levine, C. Finn, T. Darrell, and P. Abbeel (2016). “End-to-end training of deep visuomotor policies”.

TU Delft 48/.49

https://www.youtube.com/watch?v=W_sFDpq_zvs

Summary

(Over-)fitting training data can be easy, we want to generalize to new
data.

e Use separate validation and test data-sets to measure
generalization performance.

* Use regularization strategies to prevent over-fitting.

e Use prior knowledge to make specific network structures that limit
the model search space and the number of weights needed (e.g.
RNN, CNN).

e Be aware of the biases and accidental regularities contained in the
dataset.

3
TUDelft 49 / 49

	Regularization & Validation
	Specialized structures
	Recurrent Neural Networks
	Convolutional Neural Networks

	(Semi) Unsupervised Learning & Reinforcement Learning
	Examples

