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Abstract. This work surveys the major methods for model-based active
sensing in robotics. Active sensing in robotics incorporates the following
aspects: (i) where to position sensors, and (ii) how to make decisions for
next actions, in order to maximize information gain and minimize costs.
We concentrate on the second aspect: “Where should the robot move
at the next time step?”. The emphasis here is on Bayesian solutions to
this problem. Pros and cons of the major methods are discussed. Special
attention is paid to different criteria for decision making.

1 Introduction

One of the features of robot intelligence is to deal robustly with uncertainties.
This is only possible when the robot is equipped with sensors; e.g., contact sen-
sors, force sensors, distance sensors, cameras, encoders, gyroscopes. To perform
a task, the robot first needs to know: “Where am I now ?”. This is an estimation
problem. After that the robot needs to decide “What to do next ?”, weighting
future information gain and costs. The latter decision making process is called
active sensing. Some researchers make the distinction between active sensing and
active localization. “Active localization” refers to robot motion decisions (e.g.
velocity inputs), “active sensing” to sensing decisions (e.g. when a robot is al-
lowed to use only one sensor at a time). In this paper we refer to both strategies
as “active sensing”. Choosing actions requires to trade off the immediate with
the long-term effects: the robot should take both actions to bring itself closer
to its task completion (e.g. reaching a goal position within a certain tolerance)
and actions for the purpose of gathering information (such as searching for a
landmark, surrounding obstacles, reading signs in a room) in order to keep its
uncertainty small enough at each time instant to assure a good task execution.
Typical tasks where active sensing is useful are tasks executed in less structured
environments where the uncertainties are that important that they influence the
task execution. Examples are:

– industrial robot tasks: in which the robot is uncertain about the positions
and orientations of its tool and work pieces, e.g. [1], Fig. 1.

– mobile robot navigation in a known map (indoor and outdoor) [2–6]: starting
from an uncertain initial configuration (positions and orientation), the robot
has to move to a desired goal configuration within a preset time.
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– vision applications: active selection of camera parameters such as focal length
and viewing angle improve the object recognition procedures [7–10].

– reinforcement learning [11]: reinforcement learning can be performed without
having a model of the system. The robot then needs to choose a balance
between its localization (exploiting) and the new information it can gather
about the environment (exploring). This paper focuses on model-based active
sensing, the reinforcement learning methods are not discussed.

Fig. 1. Active sensing in assembly systems: (a) a robot placing a cube in a corner (b)
a robot performing a peg-in-hole insertion

Estimation, control and active sensing. Next to an active sensing module,
intelligent robots should also include an estimator and a controller:

– Estimation. To overcome the uncertainty in the robot model, the environ-
ment model and the measurement data, state estimation techniques are used
to compute the system state after fusing the data in an optimal way. Often
used estimators are Kalman filters (linear, extended, unscented) and Monte
Carlo based Bayesian estimators [12–14].

– Control. Knowing the desired task, the controller is charged with following
the task execution as closely as possible. Motion execution can be achieved
either by feedforward commands, feedback control or a combination of both
[15].

– Active sensing. Active sensing is the process of determining the inputs by
optimizing a criterion, function of both costs and utilities. These inputs are
then sent to the controller.
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Active sensing is challenging for various reasons: (i) The robot and sensor mod-
els are nonlinear. Some methods linearize these models. However, many of the
nonlinear problems cannot be treated this way and impose the necessity to de-
velop special techniques for action generation for nonlinear systems with uncer-
tainties. (ii) The task solution depends on an optimality criterion which is a
multi-objective function weighting the information gain to some other utilities
and costs. It is related to the computational load (time, number of operations)
especially important for on-line task execution. (iii) Uncertainties in the robot
model, the environment model and the sensor data need to be dealt with. (iv) Of-
ten measurements do not supply information about all variables, i.e. the system
is partially observable.
The remainder of the paper is organized as follows. In Section 2, the active

sensing problem is described. Section 3 presents the main groups of optimization
algorithms for active sensing. Section 4 terminates with the conclusions.

2 Active sensing : problem formulation

Active sensing can be cast to the trajectory generation for a stochastic dynamic
system described by the model

xk+1 = f(xk,uk,ηk) (1)

zk+1 = h(xk+1, sk+1, ξk+1) (2)

where x is the system state vector, f and h nonlinear system and measurement
functions, z is the measurement vector, η and ξ are respectively system and
measurement noises. u stands for the input vector of the state function, s stands
for a sensor parameter vector as input of the measurement function (an example
is the focal length of a camera). The subscripts k and k + 1 stand for the time
step. The system’s states and measurements are influenced by the inputs u

and s. Further, we make no distinction and denote both inputs to the system
with a (actions). Conventional systems consisting only of control and estimation
components assume that these inputs are given and known. Intelligent systems
should be able to adapt the inputs in a way to get the “best” estimates and in
the meanwhile to perform the task “as good as possible”, i.e. to perform active

sensing.
So, an appropriate multi-objective performance criterion (often called value

function) is needed to quantify for each sequence of actions a1, . . . ,aN (also
called policy) both the information gain and the gain in task execution:

J = min
a1,...,aN

{
∑

j

αjUj +
∑

l

βlCl} (3)

This criterion is composed a weighted sum of rewards: (i) j terms Uj charac-
terizing the minimization of expected uncertainties (maximization of expected
information extraction) and (ii) l terms Cl denoting other expected costs and

utilities, e.g. travel distance, time, energy, distances to obstacles, distance to the
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goal. Both Uj and Ck are function of the policy a1, . . . ,aN . The weighting co-
efficients αj and βl give different impact to the two parts, and are arbitrarily
chosen by the designer. When the state at the goal configuration fully deter-
mines the rewards, the terms Uj and Cl are computed based on this state only.
When attention is paid to both the goal configuration and the intermediate time
evolution, the terms Uj and Cl are a function of the Uj,k and Cl,k at different
time steps k.
Criterion (3) is to be minimized with respect to the sequence of actions under

constraints

c(x1, . . . ,xN ,a1, . . . ,aN ) ≤ cthr. (4)

c is a vector of physical variables that can not exceed some threshold values cthr.
The thresholds express for instance maximal allowed velocities and acceleration,
maximal steering angle, minimum distance to obstacles, etc.
Section 2.1 describes possible ways to model the sequence of actions, Sec-

tion 2.2 overviews the performance criteria related to the minimization of the
expected uncertainties Uj .

2.1 Action sequence

The description of the sequence of actions a1, . . . ,aN can be done in different
ways and has a major impact on the optimization problem that needs to be
solved afterwards (Section 3).

– The sequence of actions can be described as lying on a reference trajectory
plus a parameterized deviation of it (e.g. by a finite sine/cosine series, or by
an elastic band or elastic strip formulation, [15–17]). In this way, the opti-
mization problem is reduced to a finite-dimensional optimization problem in
the parameters.

– The most general way to describe the policy is a sequence of freely chosen
actions, that are not restricted to a certain form of trajectory. Constraints,
such as maximal acceleration and maximal velocity, can be added to produce
executable trajectories. This active sensing problem is called a Markov Deci-
sion Process (MDP) for systems that fully observe the system’s state and a
Partially Observable Markov Decision Process (POMDP) for systems where
the measurement does not fully observe the system state or for systems with
measurement noise.

2.2 Performance criteria related to uncertainty

The terms Uj represent (i) the expected uncertainty of the system about its
state; or (ii) this uncertainty compared to the accuracy needed for the task
completion. In a Bayesian framework, the characterization of the uncertainty of
the estimate is based on a scalar loss function of its probability density function.
Since no scalar function can capture all aspects of a matrix, no function suits
the needs of every experiment. Common used functions are:
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– based on the covariance matrix : The covariance matrix P of the proba-
bility distribution of state x is a measure for the uncertainty on the estimate.
Minimizing P corresponds to minimizing the uncertainty. Active sensing
is looking for the actions which minimize the posterior covariance matrix
(P = P post in the following functions) or the inverse of the Fisher informa-
tion matrix I [18, 19] which describes the posterior covariance matrix of an
efficient estimator (P = I−1 in the following functions). Minimization of a
scalar function of the covariance matrix is extensively described in the lit-
erature of optimal experiment design [20] where several functions have been
proposed:
• D-optimal design: minimizes the matrix determinant, det(P ), or the log-
arithm of it, log(det(P )). The minimum is invariant to any transforma-
tion of the state vector x with a non-singular Jacobian such as scaling.
Unfortunately, this measure does not allow to verify task completion: the
determinant of the matrix being smaller than a certain value does not
impose any of the covariances of the state variables to be smaller than
their toleranced value.

• A-optimal design: minimizes the trace tr(P ). Unlike D-optimal design,
A-optimal design does not have the invariance property. The measure
does not even make sense physically if the target states have inconsistent
units. On the other hand, this measure allows to verify task completion.

• L-optimal design: minimizes the weighted trace tr(WP ). A proper choice
of the weighting matrix W can render the L-optimal design criterion
invariant to transformations of the variables x with a non-singular Ja-
cobian:W has units and is also transformed. A special case of L-optimal
design is the tolerance-weighted L-optimal design [1], which proposes a
natural choice of W depending on the desired standard deviations (tol-
erances) at task completion. The value of this scalar function has a direct
relation to the task completion.

• E-optimal design: minimizes the maximum eigenvalue λmax(P ). Like A-
optimal design, this is not invariant to transformations of x, nor does
the measure makes sense physically if the target states have inconsistent
units, but the measure allows to verify task completion.

– based on the probability density function : Entropy [21] is a measure of
the uncertainty of a state estimate containing more information about the
probability distribution than the covariance matrix, at the expense of more
computational costs. The entropy based performance criteria are:
• the entropy of the posterior distribution: E[− log ppost(x)]. E[.] indicates
the expected value.

• the change in entropy between two distributions p1(x) and p2(x):
E[− log p2(x)]−E[− log p1(x)]. For active sensing, p1(x) and p2(x) can
be the prior and posterior or the posterior and the goal distribution.

• the Kullback-Leibler distance or relative entropy [22] is a measure for

the goodness of fit or closeness of two distributions: E[log p2(x)
p1(x) ]. The

expected value is calculated with respect to p2(x). The relative entropy
and the change in the entropy are different measures. The change in
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entropy only quantifies how much the form of the probability distribu-
tions changes whereas the relative entropy also represents a measure of
how much the distribution has moved. If p1(x) and p2(x) are the same
distributions, translated by different mean values, the change in entropy
is zero, while the relative entropy is not.

3 Optimization algorithms for active sensing

Active sensing corresponds to a constraint optimization of J with respect to
the policy a1, . . .aN . Depending on the robot task, sensors and uncertainties,
different constraint optimization problems arise:

– If the sequence of actions a1, . . .aN is restricted to a parameterized trajec-
tory, the optimization can have different forms: linear programming, con-
strained nonlinear least squares methods, convex optimization, etc. The
NEOS website [23] gives a nice overview of various optimization program-
ming solutions. Examples are dynamical robot identification [24, 25] and the
optimization of a sinusoidal mobile robot trajectory [26, 27].

– If the sequence of actions a1, . . .aN is not restricted to a parameterized

trajectory, then the (PO)MDP optimization problem has a different struc-
ture. This could be a finite-horizon, i.e. over a fixed finite number of time
steps (N is finite), or an infinite-horizon problem (N =∞). For every state
it is rather straightforward to know the immediate reward being associated
to every action (1 step policy). The goal however is to find the policy that
maximizes the reward over a long term (N steps). Different optimization
procedures exist for this kind of problems, examples are:

• Value iteration: due to the sequential structure of the problem we can
write the optimization problem as a succession of problems to be solved
with only 1 (of the N) variables ai. The value iteration algorithm, a dy-
namic programming algorithm, calculates recursively the optimal value
function and policy [28]. This approach can handle finite and infinite
horizon problems.

• Policy iteration: policy iteration, an iterative technique similar to dy-
namic programming, is introduced by Howard [29] for infinite horizon
systems.

• Linear programming: an infinite horizon problem can be represented and
solved as a linear program [30].

• State based search methods: these methods represent the system as a
graph whose nodes correspond to states. Tree search algorithms then
search for the optimal path in the graph. This approach can handle
finite and infinite horizon problems [31, 32].

Unfortunately, exact solutions can only be found for (PO)MDPs with a small
number of (discretized) states. For larger problems approximate solutions are
needed, e.g. [32, 33].
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4 Conclusions

This paper addresses the main issues of active sensing in robotics. Multi-objective
criteria are used to determine if the result of an action is better than the result
of another action. These criteria are composed of two terms: a term characteriz-
ing the uncertainty minimization (maximization of information extraction) and
a term representing other utilities or costs, such as traveled path or total time.
The basic criteria for uncertainty minimization and the optimization procedures
are outlined.
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