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Abstract— This paper presents a machine learning approach reinforcement learning approach for generating a fast walk
to optimizing a quadrupedal trot gait for forward speed. Given  |egged robots. Using this method, we have created a walk that

a parameterized walk designed for a specific robot, we propose g faster than hand-tuned gaits and among the fastest tbarne
using a form of policy gradient reinforcement learning to gaits

automatically search the set of possible parameters with the . ) ) )
goal of finding the fastest possible walk. We implement and ~ The remainder of this paper is organized as follows. Sec-
test our approach on a commercially available quadrupedal tion Il introduces the Sony Aibo ERS-210A robot platform and

robot platform, namely the Sony Aibo robot. After about suymmarizes general methods for enabling Aibos to walk, both

three hours of learning, all on the physical robots and with a5t ang current. Section Il presents our method for automa
no human intervention other than to change the batteries, the

robots achieved a gait faster than any previously known gait ICally generating a fast walk via machine learning, speaifyc
for the Aibo, significantly outperforming a variety of existing Policy gradient reinforcement learning. Section IV reposh
hand-coded and learned solutions. our learning experiments. Section V presents discussioh an

) ) ) future work and Section VI concludes.
Keywords: Learning Control, Walking Robots, Multi Legged

Robots Il. WALKING AIBOS

[. INTRODUCTION The Sony Aibo ERS-210A is a commercially available robot

Locomotion of legged robots is a challenging multidimerthat comes equipped with a color CMOS camera and an
sional control problem. It requires the specification andreo optional ethernet card that can be used for wireless communi
dination of motions in all of the robots’ legs while accougti cation. The Aibo is a quadruped robot, and has three degrees
for factors such as stability and surface friction. of freedom in each of its four legs.

One popular research platform for legged locomotion cur- At the lowest level, the Aibo’s gait is determined by a series
rently is the Sony Aibo robot, spurred on in part by the Of joint positions for the three joints in each of its legs. An
annual RoboCup 4-legged soccer competitions [1]. In th@grly attempt to develop a gait by Homby efalinvolved
domain, the speed of individual robots is often a major fact&/Sing a genetic algorithm to learn a set of low-level paranset
in determining the success of a team. Since the defaultigait tthat described joint velocities and body position [5]. More
comes with the Aibo is fairly slow, there has been significafiecent attempts to develop gaits for the Aibo have involved
incentive within the RoboCup community to develop improve@dopting a higher-level representation that deals with the
locomotion for the Aibos. trajectories of the Aibo’s four feet through three-dimemsil

Until recently, most of the locomotion improvements for thépace. An inverse kinematics calculation can then be used to
Aibo centered around hand-tuning a parameterized gais TEPNvert these trajectories into joint angles.
approach has been somewhat fruitful: since the inceptitheof ~Among higher-level approaches, most of the differences
RoboCup legged league in 1998, the speed of the Aibos H¥ween gaits that have been developed for the Aibo stem from
increased significantly. However, the process of handaunithe shape of the loci through which the feet pass and the exact
a parameterized gait both can be time-consuming and de@rameterizations of those loci. For example, a team fram th
require a good deal of human expertise. Furthermore, a ehatdpiversity of New South Wales achieved the fastest known
of robot hardware and/or the surface on which it is to walkand-tuned gait using the high-level approach describeudeab
necessitates tuning anew. with trapezoidal loci. They subsequently generated an even

One alternative to hand-tuning a parameterized gait is¢o Uf@ster walk via learning [7]. In research conducted indepen
machine learning to automate the search for good parametéently of the work presented here, the University of Neweast
In the past, various machine learning techniques have proi@am was able to generate very fast gaits by using a genetic
to be useful in finding control policies for a wide varietyalgorithm and a similar loci parameterization [8]. A teamnir
of robots including helicopters [2], [3], biped robots [4jca Germany created a flexible gait implementation that allows
Aibos [5], [6], [7]. This paper presents a policy gradienthem to use a variety of different shapes of loci [9].

Ihttp://www.aibo.com 2Developed on an earlier version of the Aibo.



Our team (UT Austin Villa [10]) first approached the gait 4
optimization problem by hand-tuning a gait described by-hal
elliptical loci. This gait performed comparably to those of
other teams participating in RoboCup 2003. The work reorte
in this paper uses the hand-tuned UT Austin Villa walk as a
starting point for learning. Figure 1 compares the reported
speeds of the gaits mentioned above, both hand-tuned and
learned, including that of our starting point, the UT Austin
Villa walk. The latter walk is described fully in a team
technical report [10]. The remainder of this section ddsgi
the details of the UT Austin Villa walk that are important to
understand for the purposes of this paper.

Hand-tuned gaits Learned gaits Fig. 2. The elliptical Io_c_us c_)f the Aibo’s foot. The halfigie is defined by
CMU German _UT Austin Hornby length, height, and position in the-y plane.
(2002) Team Villa UNSW| 1999 UNSW
200 230 245 254 170 270

During the American Open tournament in May of 2003,
Fig. 1. Maximum forward velocities of the best current gaitsrim/s) for  UT Austin Villa used a simplified version of the parameter-
different teams, both leamed and hand-tuned. ization described above that did not allow the front and rear
o ) _heights of the robot to differ. Hand-tuning these paranseter
‘The half-elliptical locus used by our team is shown igenerated a gait that allowed the Aibo to move at 140 mms.
Figure 2. By instructing each foot to move through a locus Qfster allowing the front and rear height to differ, the Aibaw/
this shape, with each pair of diagonally opposite legs irsphayned to walk at 245 mm/s in the RoboCup 2003 competition.
with each other and perfectly out of phase with the other twayplying machine learing to this parameter optimization
(a gait known as a trot), we enable the Aibo to walk. FOysigcess, however, allowed us to significantly improve the

parameters define this elliptical locus: speed of the Aibos, as described in the following section.
1) The length of the ellipse;
2) The height of the ellipse; HI. L EARNING THE WALK
3) The position of the ellipse on the axis; and Given the parameterization of the walk defined in Section I,
4) The position of the ellipse on thg axis. our task amounts to a parameter optimization problem in a

Since the Aibo is roughly symmetric, the same parametef@ntinuous 12-dimensional space. For the purposes of this
can be used to describe loci on both the left and right si@@@Per, we adopt forward speed as the sole objective function

of the body. To ensure a relatively straight gait, the length1@t IS, @s long as the robot does not actually fall over, we
of the ellipse is the same for all four loci. Separate valu hot optimize for any form of stability (for instance in the
for the elliptical height,z, andy positions are used for the face of external forces from other robots). _

front and back legs. An additional parameter which governs e formulate the problem as a policy gradient reinforce-
the turning rate of the Aibo is used to determine the skew Bient learning problem by considering each possible set of
all four ellipses in ther-y plane, a technique introduced byParameter assignments as defining open-loop policy that can
the UNSW team [11}. The amount of skew is determined b)Pe executed by the robot. Assuming that the policy is differ-

the product of the angle at which the Aibo wishes to movahtiable with respect to each of the parameters, we estimate
and this skew multiplier parameter. the policy’s gradient in parameter space, and then follow it

All told, the following set of 12 parameters define the Aibo’§0Wards a local optimum.

gait [10]: Since we do not know anything about the true functional
) form of the policy, we cannot calculate the gradient exactly
« The front locus (3 parameters: heightpos.,y-pos.) Furthermore, empirically estimating the gradient by sangpl
« The rear locus (3 parameters) can be computationally expensive if done naively, given the
« Locus length large size of the search space and the temporal cost of each
« Locus skew multiplier in the:-y plane (for turning) evaluation. Given the lack of accurate simulators for thieoAi
« The height of the front of the body we are forced to perform the learning entirely on real ropots
« The height of the rear of the body . which makes efficiency a prime concern.
« The time each foot takes to move through its locus In this section we present an efficient method of estimat-

« The fraction of time each foot spends on the ground hg the policy gradient. It can be considered a degenerate

3Even when walking directly forward, noise in an Aibo's mosioncca-  “http://www.cs.cmu.edu/"AmericanOpen03/
sionally requires that the four ellipses be skewed to alloevAibo to execute  Shitp://www.openr.org/robocup/ . Thanks to Daniel Stronger for
small turns in order to stay on course. hand-tuning the walks to achieve these speeds.



form of standard policy gradient reinforcement learninchte T  m —mn Score

niques [12], [13] in that the control policy is essentiallgem br—e | ... | 207

loop and that the only effect of sensory input is to make smalt—¢€1 br—e | ... | 214 = Average: 210
steering adjustments to compensate for noise. Like these mo

general techniques, our approach will only converge tosard 61+0 ] ... | 225

a local optimum. In contrast, some action-value reinforesm  +0 0:1+0 | ... | 220 = Average: 220
learning algorithms, such as Q-learning provably conveoge

the globally optimal policy [14]. However, Q-learning, wehi 014+e | ... | 239

is designed for Markov decision processes, is not directlyte O1+e | ... | 244 = Average: 240

applicable to our problem, which features open-loop cdntro
and no notion of “state”.
Our approach starts from an initial parameter veector 240
{61,...,0n} (where N = 12 in our case) and proceeds to 230
estimate the partial derivative af's objective function with 220
respect to each parameter. We do so by first evaluating 210
randomly generated policie§R;, Rs, ..., R;} nearm, such
that eachR;, = {61 + Ay,...,0n + Ax} and eachA); is ‘ ‘ —e
chosen randomly to be eithere;, 0, or —¢;. Eache; is a 1 — 1 6140 01+ e
fixed value that is small relative #,. As described below, the _ o o
luation of each polic enerates a score that is a mea: Flg{%&_ An example of the_ process for est|mat|ng_the gradle_nan
evalua p 3 Yy 9 - . Stttension. EaclR; is grouped into one of three categories, depending on the
of the speed of the gait described by that policy. value of the first parameterr() of eachR;. The averages for these categories
After evaluating the speed of eadR;, we estimate the can be used to estimate the value of the objective functiom@@aoundd; .
partial derivative in each of th& dimensions. We do this by

grouping eaclR; into one of three sets for each dimensian 7 < Initial Policy
while !donedo

{R1, R, ..., R:} =t random perturbations of

Sien if the nth parameter ofR; is 0,, + €, evaluate(( Ry, Ra, ..., R} )
R; € § Sto,n if the nth parameter oR; is 6, + 0 for n=1to N do
S_en if the nth parameter of?; is 0,, — €, Avg,. ., < average score for aR; that have a positive

perturbation in dimension

Avgyo,n, < average score for alk; that have a zero
perturbation in dimension

Avg_. ,, < average score for alR; that have a

We then compute an average scafeg . ., Avg4o,, and
Avg_ep for Sicn, Syo.n, andS_ ,, respectively. These three
averages give us an estimate of the benefit of altering the
nth parameter byte¢,, 0, or —¢,,. Note that in expectation, negative perturbation in dimension
there_ will bet/3 of thg t policies with eaqh of the three if Avg.o.n > Avgyen andAvgo, > Avg_.., then
possible parameter settings, though there will be someorand A, — 0
variation. For an example of this process for one dimension,

. ; else
see Figure 3_. We use these scores to construct an adjustment Ap — Avgsen — Avg_cn

vector A of size N, where :
end if
end for
. A

0 if Avgyon > Avgyen and A — Al * 1

A, = Avgion > AVg_c n, e ﬂ- +A
end while

Avgien — Avg_e,n,  Otherwise

P . - P Fig. 4. Pseudocode for th¥-dimensional policy gradient algorithm. During
We normalizeA and multiply it by a scalar step-sizg so each iteration of the main loop we samglgolicies nearr to estimate the

that our adjustment will remain a fixed size each iteratidn. Fyradient aroundr, then mover by an amount of; in the most favorable
nally, we addA to 7, and begin the next iteration. Pseudocoddrection.
for this policy gradient algorithm is shown in Figure 4.

We controlled our experiments from a computer that was
connected via wireless ethernet to the Aibos. All of thegoli due to battery swaps and mechanical failure. This also meant
evaluations took place on actual robots, without the use oftzat the only human intervention required during an experi-
simulator. Previous attempts at learning Aibo gaits inedlv ment involved replacing discharged batteries, an eventiwhi
running each experiment directly on the Aibo, which impose(@pcurred about once an hour. We used three simultaneously
certain time limitations on the learning process [7]. A morwalking Aibos for our experiments, but our approach is gaher
decentralized approach allowed us to distribute the lagrniand allows us to scale to arbitrary numbers of Aibos.
process over multiple Aibos and prevented the loss of dataWe evaluated the efficacy of a set of parameters by sending



those parameters to an Aibo and instructing it to time itself Velocity of Learned Gait during Training
as it walked between two fixed landmarks (Figure 5). More ** ‘ ‘
efficient parameters resulted in a faster gait, which tetadl|
into a lower time and a better score. After completing an
evaluation, the Aibo sent the resulting score back to the hos
computer and prepared itself for a new set of parameters to*°

"Learned Gait
(UT Awustin Villa)

280 1

Learned Gait
(UNSW)

Hand-tuned Gaii

evaluate® 2 WNSW)
When implementing the algorithm described above, we 2of RrRastnedizs
chose to evaluat¢ = 15 policies per iteration. Since there ¢ Hariined Gai

was significant noise in each evaluation, each set of pasamet 20} (German Team)|
was evaluated three times. The resulting score for thatfset o
parameters was computed by taking the average of the thregy, |
evaluations. Each iteration therefore consisted of 4%tsals
between pairs of beacons and lasted roug@lyninutes. Since

180 L L L L

even small adjustments to a set of parameters could lead to ° s 10 15 2 =
major differences in gait speed, we chose relatively small

values for eacle;. To offset the small values of eael), we Fig. 6. The velocity of the best gait from each iteration dgriraining,
accelerated the learning process by using a larger valueCgppared to previous results. We were able to learn a gailfisgntly faster
n = 2 for the step size.

Number of Iterations

than both hand-coded gaits and previously learned gaits.

Parameter Initial € Best
Value Value
Lant Front Ipcus:
L iy (height) 4.2 0.35 | 4.081
s (x offset) 28 | 035 | 0574
(y offset) 4.9 0.35 | 5.152
Rear locus:
(height) 5.6 0.35 6.02
(x offset) 0.0 0.35 | 0.217
(y offset) -2.8 0.35 | -2.982
Locus length 4893 | 0.35 | 5.285
Locus skew multiplier| 0.035 | 0.175| 0.049
Front height 7.7 0.35 | 7.483
Rear height 11.2 0.35 | 10.843
Time to move
) f i ; through locus 0.704 | 0.016| 0.679
Fig. 5. The training environment for our experiments. EachoAiimes itse ;
asgit moves back agd forth between a pair c?f landmarks (A and An&B’, Time on ground 0.5 0.05 | 0.430
or C and C). Fig. 7. The initial policy, the amount of change for each parameter, and
best policy learned after 23 iterations. All values are giwe centimeters,
except time to move through locus, which is measured in secamistime
IV. RESULTS on ground, which is a fraction.

Our main result is that using the algorithm described in
Section Ill, we were able to find one of the fastest known Aibo
gaits. Figure 6 shows the performance of the best policy 8{
each iteration during the learning process. After 23 iterat

There are a couple of possible explanations for the amount
variation in the learning process, visible as the spikes i
%T/e learning curve shown in Figure 6. Despite the fact that we

:Eet Ieiarlgmé] al\g/]cirltf;tm pégflfgdm%?a'; (sth?v;/r? :1” bFIt%u':ﬁ eraged over multiple evaluations to determine the samre f
at yielded a velocity 0 S, Taster than bo € each policy, there was still a fair amount of noise assodiate

b:its h:gg-:’:qne?eglalts%ﬁgd ;Ter?stsgrsrf?)\:Kt)ﬁzly I;r:o;vlgnlearr%;? the score for each policy. It is entirely possible that
gaits ( 'gu )- P IS gart, b w is noise led the search astray at times, causing temporary

the initial parameters and\{a!ues are given in Figure 7. . decreases in performance. Another explanation for the amou
Note that we stopped training after reaching a peak pOIICy(?(;fvariation in the learning process could be the relativafge

23 iterations, which amounted to just over 1000 field traadsrs tep size f = 2) used to adjust the policy at the end of each

in about 3 hours. Sub_sequent evaluatlt_)ns showed no furtl &hation. As mentioned previously, we chose a large step si
improvement, suggesting that the learning had plateaued. to offset the relatively small values of While serving to

6There is video of the training process at: accelerate the rate of learning, this large step size miigot a
www.cs.utexas.edu/AustinVilla/legged/learned-walk/ have caused the search process to periodically jump into a



learning an efficient gait. Unfortunately, it is difficult to
determine the impact of any particular implementation, due
to the difficulty of porting or exactly re-creating code from
other implementations.

The starting point for the search could have also affected
our final results. Since it was not obvious where the search
algorithm should start, we tried several different starints
that varied in the degree to which they had been hand-
tuned. We tested one extreme of this spectrum by starting
from completely random parameters. This proved to be too
much of an obstacle for the Aibos, since the gaits defined by
random parameters often led to violent behaviors and fretque
mechanical failures. When we started from parameters that
had been slightly tuned by hand, we found that the learning
algorithm was able to discover a gait that moved at 186 mm/s,
but the rate of learning was too slow to be useful.

Conversely, when we started from parameters that had been
finely hand-tuned, we found that the learning algorithm lad t
escape a local maximum before it could make any progress.
Although this starting point yielded better results (260 fsim
than both the random and the slightly hand-tuned starting
points, our fastest result came from a compromise. The best
starting point proved to be a set of parameters (shown in
Figure 7) that had been roughly tuned by hand, but not overly
tuned, and which constituted a reasonable but slow gait.

Fig. 8. A series of snapshots of the best learned gait, wHiotvathe Aibo
to trot at 291 mm/s.

bad part of the policy space, which would have again caused V. DISCUSSION ANDFUTURE WORK

a temporary decrease in performance. One of the useful aspects of automating the gait optimiza-
Two possible reasons for the overall success of our exp#ipn process is that search algorithms often possess lass bi
iment are (i) that our policy gradient algorithm is particuthan human engineers. For example, our gait was designed
larly effective for learning this task, and (ii) that the gaiafter a trot gait, where diagonally opposite legs strike the
implementation itself is superior to previous approaches. ground simultaneously. We assumed that the ideal trot gait
test the first possibility, we compared the performance of owould keep two feet on the ground at all times. Interestingly
approach to that of other parameter optimization methaddy s enough, the best learned gait defied our expectations by
as those presented by Press [15]. For example, Kim and Uthétempting to keep each foot on the ground only 43% of the

used Powell's method to tune their walk [7], and Weingartetiime. By allowing the learning process to affect a large iport
et al. applied Nelder and MeadBownhill Simplex Method of the gait, we were able to discover parameter settings that
(aka “amoeba”) to generate the fastest known legged walkwe would not have likely found through hand-tuning.
terms of body lengths per second on a custom hexapod robo®n a similar note, recent work has suggested that due to
platform [16]. As a comparison point, we implemented thmechanical limitations and environmental noise, the actua
Nelder Mead algorithm and used it to generate gaits for olacus that each foot follows is significantly different than
robots. Preliminary results with this method suggest thatev the requested half-elliptical locus [17]. Given this degmr
it was able to do some learning, the volume of the simpleancy between the ideal locus and the real locus, a change
quickly converged to zero which required that the algoritien in parameters describing the ideal locus may not have the
restarted frequently. The fastest gait that this methodatdes intended effect on the real locus. This discrepancy could
to discover has a reasonable speed of 248 mm/s. So far, theke hand-tuning difficult for humans, who expect a certain
policy gradient algorithm currently has yielded betterutess correspondence between parameters and their effects on the
with fewer evaluations, suggesting that the particularriggy gait. Since the learning process is unaware of the semantics
algorithm we use does indeed play a role in our success. of the parameters, it therefore might not suffer as much from
It is also possible that our particular gait implementatiodiscrepancies between the expected loci and the actual loci
was a key factor. Enabling an Aibo to walk requires careful Another benefit of automated learning can arise in situation
crafting of a variety of components that must work togetheuch that the robots are required to repeatedly switch cesfa
seamlessly. Since we developed all of our code from scratchin RoboCup, the surfaces of different playing fields can vary
is likely that some parts of our low-level gait implementati widely in hardness and friction. Repeatedly tuning paranset
differed from other implementations. The aggregate effeby hand for each surface could consume a great deal of
of these differences could have some affect the processtiafie from human engineers, whereas automatically learning
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