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o The centralized controller successfuly manages thermal interactions between wells at smaller distances, which could support denser spatial planning

o Current practices for ATES planning and operation limit the performance of urban ATES systems to increase the adoption of ATES in urban areas without reducing the performance of systems

» Operational uncertainties (e.g. variable building energy demand and ATES use) are not fully acknowledged in ATES planning; in the Netherlands,

only 40-50% of the planned system capacity is typically used (Willemsen, 2016), leading to an artificial scarcity of space in some areas Thermal balance
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(e.g. excess heating or cooling demand) can also cause undesirable long-term changes in aquifer temperature distributions constraints on thermal balance (as currently applied) can be replaced by a constraint on the average balance of neighboring systems
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Can cooperative control mechanisms improve the management of thermal interactions and imbalances for urban ATES systems? ooperative game theory can then help assess the conditions under which cooperation would be beneficial/stable

sooolmpact of thermal balance sharing on cold well storage volume 3.0 Coalition Stablllty as a function of demand imbalances
o The graphs on theleft showa shared Agent 1 - Indiv. balance ' Agent 2
3 M odel Setu p +/- 10% balance constraint, under . e b @ shapiey ®
= . 70000 [ —— Agent 2 - Shared balance o3
which agents 1 and 2 compensate ¢ Aoent - Sharedbal AN X Gately 5 0.45
e e : S 60000
« Coupled geohydrological/control simulation used to link ATES operation and groundwater dynamics for their individual imbalances; — § /N O
.. 1 : : : : by letting the agents operate their 2 ' 0.40
o Individual building control compared to a centralized control scheme with full information exchange Y 5 5 pets 2 4000 b \
ATES SYStemS more ﬂelel),’ the 30000 2.5 ..... . 40.0
shared balance constraint reduces - b 0.35 £
. 1 1. . operating costs mpact of thermal balance sharing on thermal imbalance LA A
« 3 simulated office buildings based on typical P 5 03 TP :gefntt':_mdi'vbba'm haring on thermal imbal Yoo\ e i
. . § ent2-In iv: alance - - o
/ ATES use in Utrecht; synthetic energy demand o The figure on the right uses 32 S O o - S o O 0.30 @
§ . . . * . . . . T . / =
. e proﬁle.s, with 8 replications 4 KNMI climate scenarios  to sgnul.ate operatloTlal o 3 Agent0 200  io " o a0 Agent 1 J5
u, | | scenarios over the 2035-2040 period variations by adjusting the baseline g oo \/ o 20 0.25 @
eatpump | [ é‘; / demand of agents 1 and 2, in a range Y R e = §
S iy agont ; . annual cooling energy demand (2040) of 0-50% towards heating and cooling c o ® 020 <
Vs wmns . = . )
h el 1 (: | respectively s o © o ° © e
Heat Exchanger - hi e 10 . @
/ \ . | . ©
i " N ~ 5% 2 ] Impact of thermal balance sharing on operational costs ©
:%4'; . Sq1\0”%fc‘ﬂ, (s.. /7 Agent i %,08 o 'Hle 1nS€t teI' nar Y plOtS ShOW hOW . oo Agent 1 - Cumulative savings on energy costs O 0.15 'g
Aquifer Thermal Energy Storage (ATES) System 4@%_6:- y r,q@c( ;:Z ] 2 | :CE_): - savings from cooperation on ther- iugi 60000 Agent 2 - Cumulative savings on energy costs 15 O . —_
Warm Well Cold Wl - ~uf 2 00 mal balance could be allocated with £ ® @00 o0 010
- (YSM-,\ Ty P £ & 40000 -20.0 :
[‘ S/ (EM Y : Shapley values. The calculated sta- g
: 800 e : bility of the coalitions is based on ¢
REfnagentionjects ‘ | -200 Adgent ' %00 — G th iati f the Shaplev-Shubik g 20000 Larger imbalances tend to 7 0.05
MATLAB MPC environment g;n o ij ¢ Var?acllon O € Shapley-ohubl § 10000 improve savings from cooperation, but are less stable 60.0
| - . y Vi power index across agents 0 10
Grid and. Temperature, head w00 © P P ° " 0450 S0 S0 00 650 700 0.6 05 0.4 -0.3 0.2 ~0.1 0.0 0.1
Wi propentics o Imbalance towards heating of agent 2
/ xS o Finite-difference simulation of temperature 900
‘ L= s tprocessor |‘ " e WAT model \ distributions in a confined aquifer, with typical .
properties for ATES use in the Netherlands 5 . CO n CI usions an d n eXt Ste ps
o Individual case imposes contraints on individual ATES well storage o Weekly time resolution (5 years total runtime)
volumes and thermal balance over time (control design presented in » 7 layout policies tested, based on relative distance o The exchange of information between neighbouring ATES systems could help cope with operational uncertainties such as building energy
Rostampour et al., 2016) between neighbouring ATES wells demand, and allow operators to better manage thermal interactions and imbalances between neighbouring systems
o Centralized case introduces additional coupling constraints on the volume o Thermal radius
stored in neighboring wells to avoid overlap, assuming perfect information: u - « A combination of denser spatial planning and cooperative operation could significantly improve the efficiency at which subsurface volume

_ | is allocated for ATES systems, and increase future potential for ATES adoption in dense urban areas
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o The simulations will be extended to account for multiple building operators with heterogenous and time-varying control strategies




