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Research Direction
The following concepts are involved:

@ Constrained Optimal Control Techniques:
= Model Predictive Control

® Large Scale Complex System:
= Aquifer Thermal Energy Storage Smart Grids

© Distributed System Solutions:
= Cooperative Strategy - Negotiation Approach

® Robustness of Solutions w.r.t. Uncertainties
= Randomized Approach - Data-Based Robust Optimization
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= Model Predictive Control

® Large Scale Complex System:
= Aquifer Thermal Energy Storage Smart Grids

© Distributed System Solutions:
= Cooperative Strategy - Negotiation Approach

® Robustness of Solutions w.r.t. Uncertainties
= Randomized Approach - Data-Based Robust Optimization

Main research direction:
Stochastic Distributed Optimal Control for Large Scale Complex Systems J
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Large Scale Complex Systems

University

Aquifer Thermal Energy Storage (ATES) System
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Outline

@ Single Agent Model
® Control Problem Formulation
© Simulation Study and Main Results

® Discussions and Future Works
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Building Thermal Comfort Relations
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Building Thermal Comfort Model Formulation

We define the following model:
Building Dynamical Model

XB,k+1 = XB,k + fB8(XB,k> UB k> VB,k» VBext,k)T
y8.k = 88(xB,k» UB k)

= Building inside variables (states): xgx € R3

= Building outside variables (uncertain):  Vgext,k € R3
= Pump flow rate variable (control):  up

= Supplied water temperature: vk

* Returned water temperature:  yg

= Sampling period: T
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Heat Exchanger Model

A countercurrent heat exchanger is used and it presents via a static model.

Static Model Variables:

= Input water temperatures: Ti,?,pk biulding plate Toi’i,k
Vhe,k € R? —_— —=

= Pump flow rates S —
(control variables): ua , us k To?J’t)‘k aquifer plate Ti:ﬁ(

= Qutput water temperatures:

Yhek € R2 Heat Exchanger

Heat Exchanger Static Model J

Yhe,k = H(Vhe ks Ua K, Us k)
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Heat Pump Model

An electrical water to water heat pump is used with static model.

Static Model Variables: T oa con
in,k out,k
= Input water temperatures: o o
Vhp,k S Rz 5 5
. © g
Pump flow rates 5 | — +|3
(control variables): ug k, us k e §
= Qutput water temperatures: < <
Yhpk € R? Torx HeatPump T
Heat Pump Static Model
Yop,k = P(Vhp,ks UB Ky Us k) J
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Storage Tank Model

We define an storage tank model with the following first order difference
equations:
Vs,k+1 = Vs,k + Vin,k - Vout,k

Vin,k

Vs, k
Ts’k+1 = > TS,k +

ML LS R UL
Vs.k + Vink Vok + Vink

Storage Dynamical Model

xs k+1 = Fs(Xs i, Us iy Vs k)
¥s.k = 85(xs k)

= Tank temperature and volume variables (state): x5 € R2
= Pump flow rate variable (control):  us
= Input water temperature: s

= Output water temperature:  ys x
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Boiler and Chiller Model

We define the boiler and chiller water temperatures with the following
relations:

boi  _ o chi — RO
Tout,k =90°C Tout,k = 5°C
. . boi __ H . chi __
Boiler: Tin,k = Tbypass,k Chiller: Tin,k = Tbypass,k
Up,k = Vp,kUB k Uc k = V¢ kUS k

= Boiler valve position (control): vp, € [0, 1]

= Chiller valve position (control): v.x € [0,1]
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Aquifer Thermal Energy Storage System Principle

Similar modeling as the storage model by introducing different modes:

= Woater is taken from one

of the wells and is injected Tk
into the counterpart well. '
v
Taken water has. constant CPyag s [ag | Tag
temperature until the Wk w,k out,k
aquifer water temperature |, .
H Ak amb,k
dominates. : |
. . a al al
= Injected water has gained — Vc,l? ] Tc,lcj e ""Touqt,k
thermal energy and it is 1
stored for the next L
upcoming season. Tin?k
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Aquifer Thermal Energy Storage System Model

We define the following Model:

ATES system Dynamical Model

XA k+1 = FA(XA ky» UA ks VA Ky Sw,ks Sc,k)
YAk = 8A(XA k> Sw ks Sc,k)

= Wells temperature and volume variables (state):  xax € R?
= Pump flow rate variable (control):  ua
= Output water temperature:  ya k

= Input water temperature:  va k
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Interconnections Between Each Subsystem
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Interconnections Between Each Subsystem

@ ATES system: vp g 1= T?:,k, YAk = Tiit,k
aq  _ Tap
& Tin,k o Taut,k

@® Heat exchanger: vk 1= [T?,ik,T?,ik],
ap s aq
& Tin,k =T

out,k and
© Heat pump: vy«

o ap
Yhe,k = [Tout,k ’

bp
out,k
bp __ chi
Tm kK — (1 - vak)Tsyk + VCykTout,k
con eva

= [ in,k’Tin.k]' Yhp,k

- T?Va

in,k

= [Tout ko

Tooe = Snk(Sw,k Tome ke Seok Tooe i) F (1= Sn,ic) (S k T i

= Sli»k(sc’kTZZt,k+5W,kTrBet,k)+(1_S"J‘)(swakTout,k+SCJTEet,k)

O Storage model: vs i := Tipk, Ysk:= Tfmt’k
T?n,k - Vh,k(sw,kTout,k + sCskT:lat,k) + (1 — vii)T

© Building model: vgy := TE

B

Tout k]

B
+ SE»kTret,k)
ext
con

B
ret,k
s "B
sup,k’ YB,k = Tret,k

boi b
Tauok = ik (Sw,k Tou k F S,k (1= Vo) Tout k + Vo,k Tone ) + (1 = Vai) Tore &
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Single Agent Representation

Consider compact formulation of dynamical agent system:
Single Agent Model

Xk+1 = F(Xy Uy Vic, Sk, Wk)

= State variables: xx := [xB k, Xs k> XA k] € R?

= Pump flow rate variables: ug := [ug k, Us k, Ua k] € R3

= Valve position variables: vi := [vp k, Vc k> vik] € [0, 1]3

= Operating mode variables: sg := [Sw k, Sc,k» Sn,k] € {0, 1}3
= Uncertain variables: wy := [To .k, lo,k, Vo,k] C A € R3

= State variables are available at each sampling time k.

Vahab Rostampour (DCSC) Building with ATES October 15, 2015

22/35



Outline

® Control Problem Formulation
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Control Problem Formulation

We formulate an optimization problem as follows:

min Objective Function: Reference Tracking
{Uk,Vk}kN=1
subject to: Nonlinear System Dynamics

State and Control Bounds

Valves, Modes and Uncertainty Sets
Heat Exchanger Capacity Constraints
Heat Pump Capacity Constraints
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N
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Control Problem Formulation

We formulate an optimization problem as follows:

N
- B 2
min_ E Z *y(Tz,k — Tset)
{uiesvic ks k=1
subject to: Xk+1 = F(Xky Uky Vicy Sky W)

Xmin < Xk < Xmax 5 Umin < Uk < Umax
OSVkSI’ skE{O’l}a WkEA

VI < Upek < VR ymin < ek < ypmax
Heat Pump Capacity Constraints
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Control Problem Formulation

We formulate an optimization problem as follows:

N
min_ E (> AT, — Teet)?
{uvic}emy k=1
subject to: Xk+1 = F(Xky Uk, Viy Sky W)

Xmin < Xk < Xmax 5 Umin < Uk < Umax
OSVkSI’ SkE{O?l}a wp € A

min max min max
Vhe SVhe,k S Vhe s Yhe Syhe,k S-yhe
min max min max
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Control Problem Formulation

We formulate an optimization problem as follows:

N
E (> AT, — Teet)?
k=1

min
{u,vi
subject to: Xk+1 = F(Xky Uk, Viy Sky W)
Xmin < Xk < Xmax 5 Umin < Uk < Umax
0<v<1, SkE{O,].}, we € A
U < ek S VI Lyt < ek <y
" < vhpk S VIR, Y < Yook <y
Proposed Formulation
Stochastic Mixed-Integer Nonlinear Optimization Problem J
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© Simulation Study and Main Results
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Simulation Study

A single agent model control problem formulation:
= Sampling period: 1h
= Prediction horizon: 24h
= No integer variables (fixed)
= No stochastic terms (deterministic controller)
= Linear approximation of HP & HE complex subsystems
= Remove complex constraints of HP & HE:
Vet < Uhes S U, Y < Yhek <y

min max min max
Vhp < Vhp,k < Vhp 5 Yhp < Yhp,k < Yhp
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Simulation Results
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Simulation Results
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Main Results
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Main Results

@ Single Agent Model Derivation:

= Detailed mathematical representations of each subsystem (components)
that are involved in building heating and cooling system with ATES.
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Main Results

@ Single Agent Model Derivation:

= Detailed mathematical representations of each subsystem (components)
that are involved in building heating and cooling system with ATES.

® Single Agent Control problem Formulation:

= Deterministic nonlinear program for each sampling time k
= Determination of feasible operating bounds

© Simulation Results:

= Building model simulation with a real building case study properties
= lllustrate a performance of controller for the case study building model
= Obtain a feasible control solution for the case study building model
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Research Results

= Published:

@ IFAC Conference on Nonlinear Model Predictive Control, Seville, Spain
September 17-20, 2015. (conference paper)

@® 34th Benelux Meeting on Systems and Control, Lommel, Belgium
March 24-26, 2015. (abstract paper)

© 6th European Geothermal PhD Day, Delft, Netherlands
February 25-27, 2015. (abstract paper)
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Research Results

= Published:

@ IFAC Conference on Nonlinear Model Predictive Control, Seville, Spain
September 17-20, 2015. (conference paper)

@® 34th Benelux Meeting on Systems and Control, Lommel, Belgium
March 24-26, 2015. (abstract paper)

© 6th European Geothermal PhD Day, Delft, Netherlands
February 25-27, 2015. (abstract paper)

= Next Plans:
@ European Control Conference 2016 by October 20, 2015.

® European Geothermal Congress 2016 by October 31, 2015.
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® Discussions and Future Works
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Discussions: Open Issues

® Computational Tractability:
complexity of single nonlinear optimization problem:

= Dimension of decision space: (3 4+ 3) x 24
= Dimension of constraint function:
= nonlinear equality: 9 x 24
= inequality: 2 X (9434 3) x 24
= Computational time: construction: < 0.1s & solver: < 2 min
= Simulation time for one year: < 2 weeks
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Discussions: Open Issues

® Computational Tractability:
complexity of single nonlinear optimization problem:

= Dimension of decision space: (3 4+ 3) x 24
= Dimension of constraint function:

= nonlinear equality: 9 x 24
= inequality: 2 X (9434 3) x 24
= Computational time: construction: < 0.1s & solver: < 2 min
= Simulation time for one year: < 2 weeks
® Computational time is growing w.r.t. Complexity:

= Adding integer variables

= Considering number of uncertain scenarios: > 1000
= |nteractions modeling between multiple agents

= lIterations of negotiation approach between agents

© Simulation time is growing w.r.t. Computational time:
= Simulation for at least two years to capture agents interactions?
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Discussions: Some |deas

@ Hierarchical settings:
= Weekly-based control approach for ATES system
= Simulate time for more than two years
= Hourly-based control approach for Building system
= Simulate time for about one week
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Discussions: Some |deas

@ Hierarchical settings:
= Weekly-based control approach for ATES system
= Simulate time for more than two years
= Hourly-based control approach for Building system
= Simulate time for about one week

® Alternative aspects:
= An agent consists of an ATES system with building:

= Building model represents via an uncertain energy demand profile
= Thermal energy balance has to be satisfied
= A more simple agent model:
= An ATES system with the stored water volume as a state variable and
the fixed water temperatures
= A building thermal comfort model with the building zone temperature
as a state variable and the supplied/returned water temperatures
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Future Works: Interactions Model
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Future Works: Optimal Operation

University
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Future Works: Effective Operation

‘

University
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Future Works: Negotiation Approach
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Questions?
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Building Thermal Comfort Energy Demand

Main goal is to keep building zone temperature at the desired level.
= Building energy demand level is: Eg = Egain — Ejoss
= Endogenous source of losses: Ejpss = Q0 + Qso + Quent
= Convection heat transfer from zone and solid to outside air: Q0, Qso
= Ventilation thermal energy lost: Quent
= Endogenous source of energy: Egain = Qradz + Qrads + Qp + Qe
= Radiation absorption by building zone and solid: Q,adz, Qrads

= Occupancy and heat gain due to the electrical devices: Qp, Qe

Vahab Rostampour (DCSC) Building with ATES October 15, 2015 1/6



Heat Exchanger Model

Having the following relations:

- TP

= Aquifer plate thermal energy: Qnhe.x = PwCp,wla, k(T in.k

out,k

= Building plate thermal energy: Qhe.k = PwCp,wUs, k(T,,, K Tzzt’k)

= Using the internal thermal energy conditions: Qpex = kheAheATf‘;

. ATt‘: is the mean temperature difference for the heat transfer.

Heat Exchanger Static Model

) Yhe,k = H(¥he,ks Ua k-, Us k)
. Vk€{0,1,2,---}
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Heat Pump Model

Having the following relations:

= The thermal energy of condenser Qp x and evaporator Qc x sides:

Qn.k = PwCpwtitk(Toue i — Timk
eva €eva
Qcak = pwcp,wUS,k(T,-,,,k - TOllt,k)
= Using the internal thermal energies conditions:
h h
Qi = khpAhpATnf’h and Q¢ x = khpAhpAT”’,”c
= The coefficient of performance: COP = Qpk (Qnk — QCJ()_1

= Using Carnot cycle: COP = 9, T (T — Tcs)_1

Heat Pump Static Model

| Yhp,k = P(¥hp,ks UB k> Us k)
P Vk € {0,1,2,-.-}
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Aquifer Thermal Energy Storage System Model

Consider the following mixed-integer first-order difference equations
v, k1l = Vw « + (Swk — Sck)Vin
Va1 = Ve + (Sek — swk) Vi

aq aq aq aq
Tad Vw k T 4 Sw kVin k aq a(Tw,k - Tamb,k
w,k+1 = {jaq w k aq ink aq
’ \ w,k + sw kV,,, k ’ \ w,k + sw kV,,, k ’ Vw,k + sw,kVin,k
aq aq aq
Tad _ Vc,k aq Sc ka k aq a(Tc,k B Tamb,k
c,k+1 — \/aq aq c,k aq aq ink aq ]
’ Vc,k + Sc ka k ’ Vc,k + Sc ka k ’ Vc,k + SCakV'" k

= Integer variables of warm and cold season: sy, Sc.k € {0,1}

= Qutput water temperature is: Ti‘j,t K = Sc kT:., « + SwkT

Vahab Rostampour (DCSC) Building with ATES

October 15, 2015 4/6



Interconnections Between Each Subsystem

. . T . T2
@ ATES system: vp i := Tin,k, YAk = Tout’k
aq  __ Tap
" Tm k — Tout k

bp bp
@® Heat exchanger: vhe i := [Tm ko Tinkls Ve [Tout k> T out k

- TR =Td. and prk =(1— ver)Top + ve TN

out,k

_ con eva . con
© Heat pump: Vhpk = [Tm k? 'in,k1 Yhp,k [ out,k? out,k]

con __ ext B
" Tin,k - s"ak(SWakTout,k+$CakTret,k)+(1_S"ak)(SWakTout,k+sC,kTret,k)
eva __ bp B ext B
= Tk = s”,k(sc’kTout,k+sWykTret,k)+(1_s" k)(sW,kTout,k+sc7kTret,k)
@ Storage model: vsx = Tink, Ysk 1= Tout K
— Te B
Tm k= Vn k(SW kTout k + Sc,k out,k) + (1 - Vhak)Tret,k

O Building model: vp 4 := TSup o YBk = th’k

B boi b
Tsup,k = Vn k(SW kTouzi‘ k + Sc,k((l - Vbak)TZ?lr:.‘,k + Vb,kTozlt,k)) + (1 - Vh,k)ToZt,k
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Simulation Results
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