District Energy Management

Optimal Control Strategies of Seasonal Storage Devices

Vahab Rostampour

Deft Center of Systems and Control Hybrid and Distributed Systems and Control

27th January 2016

Aquifer Thermal Energy Storage (ATES)

- A large-scale natural subsurface storage for thermal energy
- An innovative method for thermal energy balance in smart grids

Cold season:

- The building requests thermal energy for the heating purpose
- Water is injected into cold well and is taken from warm well
- The stored water contains cold thermal energy for next season

Aquifer Thermal Energy Storage (ATES)

- A large-scale natural subsurface storage for thermal energy
- An innovative method for thermal energy balance in smart grids

Warm season:

- The building requests thermal energy for the cooling purpose
- Water is injected into warm well and is taken from cold well
- The stored water contains warm thermal energy for next season

Aquifer Thermal Energy Storage (ATES) System

4 / 11

Mathematical Model

Define x_k to be the imbalance error between demand and production level. This yields the following dynamical model for imbalance error:

Our objective: design a state feedback control policy that minimizes the energy consumption of buildings, while keeping room temperatures between comfortable limits, despite *uncertain weather conditions*, and subject to the operational constraints

Optimization problems under uncertainty:

 Robust Programs: provide a guaranteed level of performance for all admissible values of the uncertain parameters equally likely:

$$\begin{cases} & \min_{x} \quad c(x) \\ & \text{s.t.} \quad g(x,\delta) \leq 0, \quad \forall \delta \in \Delta \\ & x \in \mathcal{X} \end{cases}$$
 (RPs)

- Tractability issue occurs in many control problems
- Very conservative since all uncertainty realizations are treated equally

Optimization problems under uncertainty:

• Chance Constrained Programs: the relaxed version of RPs that allow constraint violation with a low probability $\varepsilon \in [0,1]$:

$$\left\{ \begin{array}{ll} \min\limits_{x} & c(x) \\ \text{s.t.} & \mathbb{P}\left[g(x,\delta) \leq 0\right] \geq 1 - \varepsilon \\ & x \in \mathcal{X} \end{array} \right. \tag{CPs}$$

- Accessibility of the probability distribution P
- Intractable optimization problem and in general nonconvex
- Probability associated with the chance constraints can be hard to compute since it requires a multi-dimensional integral

Optimization problems under uncertainty:

• **Big Data Programs:** We see a definite transition from a classical exact model to a data driven approach in the age of big data:

- How we deal with optimization and or control problems to reflect this transition?
 - We do not know the model information exactly: $\mathbb{P},\ g(\cdot)$
 - Only a finite amount of data is available $\{\,g_k(\cdot)\,|\,k=1,2,\cdots,N\,\}$
- How much information is really required to make meaningful estimates or informed decisions?

Optimization problems under uncertainty:

 Scenario Programs: Computationally tractable approximations of CPs in which only finitely many uncertainty scenarios are considered:

$$\begin{cases} & \min_{x} \quad c(x) \\ & \text{s.t.} \quad g(x, \delta_i) \leq 0, \quad \forall i \in \{1, \cdots, N\} \\ & x \in \mathcal{X} \end{cases}$$
 (SPs)

- δ_i , for $i=1,\cdots,N$, are N independent and identically distributed scenarios drawn according to the probability measure $\mathbb P$
- ullet Based on generating a large number N of stochastic scenarios, thus may lead to a very conservative solution
- E.g., convex problem $N>10^3$, and nonconvex problem $N>10^4$

Conclusions

Remarks:

- Centralized control problem formulation for a SmartThermal Grid
- Affine Uncertainty Feedback Policy with chance constraint formulation
- Convex Reformulation of the proposed stochastic constrained control

Next Steps:

- Developing a Real Demand Profile Generator by using a detailed building dynamical model
- Incorporating Aquifer Thermal Energy Storage System (ATES) in the developed framework

Thank you! Questions?

Conclusions

Remarks:

- Centralized control problem formulation for a SmartThermal Grid
- Affine Uncertainty Feedback Policy with chance constraint formulation
- Convex Reformulation of the proposed stochastic constrained control

Next Steps:

- Developing a Real Demand Profile Generator by using a detailed building dynamical model
- Incorporating Aquifer Thermal Energy Storage System (ATES) in the developed framework

Thank you! Questions?

District Energy Management

Optimal Control Strategies of Seasonal Storage Devices

Vahab Rostampour

Deft Center of Systems and Control Hybrid and Distributed Systems and Control

27th January 2016

