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Optimization and Team Decision Making

= How can we distribute optimal team decision-making?
= How can this work in a real-time control system?
= What information should be exchanged?

= How can we deal with uncertainty sources in networked systems?
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Outline

@ Smart Thermal Grids
Multi-Agent Networks with Private and Common Uncertainties

® Smart Power Grids
Large-Scale Complex Power System with Uncertain Generation

© Pick an MSc project in Distributed Framework
Smart Energy Management with Presence of Uncertainties (Risks)

O Concluding Remarks
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Aquifer Thermal Energy Storage (ATES)

= A large-scale natural subsurface storage for thermal energy

= An innovative method for thermal energy balance in smart grids

Cold season:
= The building requests thermal
energy for the heating purpose

= Water is injected into cold well
and is taken from warm well

= The stored water contains cold
thermal energy for next season
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Building Demand Generator
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Demand Profile Generator:

Heating Energy Demand
< o

Desired
Building
Temperatures

Cooling Energy Demand‘
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Building Demand Energy Generator
Based on Desired Comfort Service
and Weather Conditions

= Complete and detailed building dynamical model

* Desired building temperature (local controller unit)

Environmental Variables Spemﬁc

Weather
Realization

= |n a specific weather realization, deterministic demand profiles are generated
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Building Demand Generator

Desired
Building
Temperatures

Heating Energy Demand

Environmental Variables U ncerta i n
Weather

Cooling Energy Demand Conditions

Building Demand Energy Generator
Based on Desired Comfort Service
and Weather Conditions

Demand Profile Generator:

= Complete and detailed building dynamical model
= Desired building temperature (local controller unit)

= |n uncertain weather conditions, uncertain demand profiles are generated
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Building Comfort Service

Desired
Building
Temperatures

Optimal Energy Management
O Heatmg Energy Demand
Coollng Energy Demand

Building Demand Energy Generator

Based on Desired Comfort Service
and Weather Conditions

Environmental Variables H
- Uncertain
Weather
Conditions

Building Control Unit

Building Control Unit:

= Main components: Boiler, HP, HE, micro-CHP, Buffer Storage
= ON/OFF status together with production schedule as decisions

= Thermal energy balance for dynamical systems
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Next Steps: ATES Systems

Desired
Building
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Building Demand Energy Generator
Based on Desired Comfort Service
and Weather Conditions
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e Incorporate ATES System

¢ Interaction between components
¢ Different operational time scale

¢ Additional degrees of freedom
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Uncertain Environmental Variables
Weather
Conditions.

Desired
Building
Temperatures.

|

e

| Simulation Model

Optimal Actions, Schedules and etc.

A

Building Control Unit
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Real System Behaviour

(e.g. simulation environment)

Measurements of Real System States

Controller
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Smart Thermal Grids: Conceptual Representation
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Smart Thermal Grids: Conceptual Representation
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Smart Thermal Grids: Conceptual Representation
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Smart Thermal Grids: Conceptual Representation
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Smart Thermal Grids: Conceptual Representation
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Smart Thermal Grids: Conceptual Representation
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Smart Thermal Grids: Conceptual Representation

Uncertain
Power and Heat
Demand
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e Hourly Based Demand

e Complex Dynamical Model

e Desired Building Temperature
e Weather Condition Effects
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Mathematical Model

Define 2y, to be the imbalance error between demand and production level.
This yields the following dynamical model for imbalance error:

‘@ stochastic disturbance
with unknown set

— U ol i =Azy+Buptwp e Tk

Our objective: design a state feedback control policy that minimizes the
energy consumption of buildings, while keeping room temperatures
between comfortable limits, despite uncertain weather conditions, and
subject to the operational constraints
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Stochastic Optimization Problems

Optimization problems under uncertainty:

= Robust Programs: provide a guaranteed level of performance for all
admissible values of the uncertain parameters equally likely:

min  ¢(x)
st. g(z,6)<0, VoeA (RPs)
BE X

= Tractability issue occurs in many control problems
= Very conservative since all uncertainty realizations are treated equally
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Stochastic Optimization Problems

Optimization problems under uncertainty:

= Chance Constrained Programs: the relaxed version of RPs that
allow constraint violation with a low probability € € [0, 1]:

min c(x)
st. Plg(z,0)<0]>1—¢ (CPs)
ze X

= Accessibility of the probability distribution PP

= Intractable optimization problem and in general nonconvex

= Probability associated with the chance constraints can be hard to
compute since it requires a multi-dimensional integral
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Stochastic Optimization Problems

Optimization problems under uncertainty:

= Big Data Programs: We see a definite transition from a classical
exact model to a data driven approach in the age of big data:

Exact Models Black Box Models
Perfect Infomration L_——> Big Data

= How we deal with optimization and or control problems to reflect this
transition?

= We do not know the model information exactly: P, g(-)
= Only a finite amount of data is available { g;(-) |k =1,2,--- ,N }

= How much information is really required to make meaningful
estimates or informed decisions?
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Stochastic Optimization Problems

Optimization problems under uncertainty:

= Scenario Programs: Computationally tractable approximations of
CPs in which only finitely many uncertainty scenarios are considered:

min c(z)
T
st. g(z,6;,) <0, Vie{l,---,N} (SPs)
reX
= §;, fori=1,--- N, are N independent and identically distributed

scenarios drawn according to the probability measure P

= Based on generating a large number N of stochastic scenarios, thus
may lead to a very conservative solution

= E.g., convex problem N > 10?, and nonconvex problem N > 10*
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Next Steps: Price Based Negotiation Algorithm
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Next Steps: Price Based Negotiation Algorithm

University

=

=410
a s

o
2 s

[} = =
Vahab Rostampour (DCSC-TUD) Distributed Stochastic Control



Next Steps: Price Based Negotiation Algorithm

Vahab Rostampou

(DCSC-TUD)

Distributed Stochastic Control



Next Steps: Price Based Negotiation Algorithm

| Distributed Transaction Coordinator
@ﬂ Price Based Negotiation Algorithm \
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Next Steps: Price Based Negotiation Algorithm

Distributed Transaction Coordinator
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Smart Power Grids Under Uncertainty

Wind power
Operator

Decisions

Contingencies

Y

[Maria Vrakopoulou, FERC conference June 23-25, 2014]
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Decision Making Under Uncertainty

Main tasks of the Transmission System Operator (TSO):

1. Ensure “N-1security”

N-1 security criterion:

No operational limit violation
after any single component
outage

[Maria Vrakopoulou, FERC conference June 23-25, 2014]
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Decision Making Under Uncertainty

Main tasks of the Transmission System Operator (TSO):

1. Ensure “N-1 security” 2. Maintain power balance
N-1 security criterion: Generation active power capacity
No operational limit violation Up-regulating reserves
after any single component - it

Operating point
outage
Down-regulating reserves
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Decision Making Under Uncertainty

Main tasks of the Transmission System Operator (TSO):

1. Ensure “N-1security” 2. Maintain power balance

N-1 security criterion: Generation active power capacity

No operational limit violation Up-regulating reserves

after any single component » T ) )
Operating point

outage
Down-regulating reserves

Optimal component setpoints Optimal reserve capacity and
for preventive and corrective control allocation

..but an optimal and secure operation under uncertainty is a challenging problem!

[Maria Vrakopoulou, FERC conference June 23-25, 2014]
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Decision Making Mechanism Under Uncertainty
Planning

DATA
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Planning

Decision Making Mechanism Under Uncertainty
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Decision Making Mechanism Under Uncertainty

Planning

A

Decision
tme making

mechanism

scenarios
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Decision Making Mechanism Under Uncertainty

Planning
8 >
E [
3
g . .
Decision
time \ making
mechanism Optimal set-points
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Decision Making Mechanism Under Uncertainty

Planning

scenarios

" \-

Optlmal set-points
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Vahab Rostampour (DCSC-TUD)

u}
)
l
n
it
S
»
i)

Distributed Stochastic Control



Decision Making Mechanism Under Uncertainty

Planning

scenarios

Optlmal set-points
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Real time operation
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Decision Making Mechanism Under Uncertainty

Planning

Decision
tme making

mechanism Optimal set-points

scenarios

Real time operation

scenarios
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Optimal Energy Management Under Uncertainty

a) Operational costs

A

[Maria Vrakopoulou, FERC conference June 23-25, 2014]
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a) Operational costs

Optimal Energy Management Under Uncertainty

I Including security constraints increases the costs
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a) Operational costs

Optimal Energy Management Under Uncertainty

@ Including security constraints increases the costs

0 Probabilistic robustness increases the cost as well

=

Vahab Rostampou

(DCSC-TUD)
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Optimal Energy Management Under Uncertainty
a) Operational costs - OPF

cost
B Decrease cost by exploiting controllability of
certain componets (e.g. AVR, HVDC, Loads)

B Model their post-disturbance set-point as a
function of the uncertainty (e.g. affine policies)

[Maria Vrakopoulou, FERC conference June 23-25, 2014]
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Probabilistic Energy Management Framework

a) Problem set-up

* DCpower flow =—> linearized network equations
*  Uncertainty: wind power B,
*  Preventive control: generation dispatch Pg

*  Security for the post-disturbance steady state operating point
after the Secondary Frequency Control

Post-disturbance
operating point

Pre-disturbance
operating point

Secure region

[Maria Vrakopoulou, FERC conference June 23-25, 2014]
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e DCpowerflow =—> linearized network equations
*  Uncertainty: wind power B,
+  Preventive control: generation dispatch Pg

*  Security for the post-disturbance steady state operating point
after the Secondary Frequency Control
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Probabilistic Energy Management Framework

a) Problem set-up

* DCpowerflow =—> linearized network equations
*  Uncertainty: wind power B,
+  Preventive control: generation dispatch Pg

*  Security for the post-disturbance steady state operating point
after the Secondary Frequency Control

Generation-load mismatch  Pmismatcn is compensated by the generators

l PG,post =P — ke Prismatch
I Ppismatcn:  linear function of Pg and R,
I d: “distribution vector”

[Maria Vrakopoulou, FERC conference June 23-25, 2014]
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Probabilistic Energy Management Framework

b) Optimization problem

Deterministic problem

min J(x)
X
subject to

B+ fot B i =1

Fx+f+Hé8 <o

Decision variables: X = Pg

Uncertain variables: 6 = P,

[Maria Vrakopoulou, FERC conference June 23-25, 2014]
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Probabilistic Energy Management Framework

b) Optimization problem

Deterministic problem Chance constrained problem
min J (x) min /(x)
X X
subject to subject to
f )i

FoqX + fog + Hog =0 E FogX + foq + Hpgd = 0

Fx+f+H8 <o P(Fx+f+H8§<0)=>1—¢
Decision variables: x = Pg
Uncertain variables: 6 =P,

[Maria Vrakopoulou, FERC conference June 23-25, 2014]
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Probabilistic Energy Management Framework

b) Optimization problem

Deterministic problem Chance constrained problem
min J (x) min J (x)
X X
subject to subject to
f f

Feqx +feq + Heqé' =0 Feqx +feq + Heqd =0

Fx+f+H8 <o P(Fx+f+H§<0)=1—¢
Decision variables: x=P; Trade-off between

security and cost:

Uncertain variables: 6=0PR, y €€(0,1)

[Maria Vrakopoulou, FERC conference June 23-25, 2014]
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Outline

© Pick an MSc project in Distributed Framework
Smart Energy Management with Presence of Uncertainties (Risks)
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Distributed Constraint Fulfillment

« Design methods for coupled constraints
(e.g. collision avoidance)

P
eI
] IS ,///'5,//:4 T e - Guaranteed feasibility in distributed MPC
“:f:
’. " « Approximation schemes, controlled

schemes
e invariant sets and reachability

» Robust constraint fulfillment with
negotiation

* Reducing conservativeness

W
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Consensus in
Distributed Predictive Control

« Interplay between consensus seeking
Q - @ and MPC
\ « Incremental subgradient methods
LRy « Optimal synchronization problems
with constrained subsystem dynamics
« Application to multi-vehicle
coordination, oscillator networks, etc.
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Distributed Optimization and MPC
for Large-Scale Infrastructures

« Decomposition methods
in optimization and
dynamic programming

. Hydro power network L o
- Application to Distributed

MPC schemes

« Study of performance
versus uncertainty in
DMPC schemes

Canal network

« Achievable performance
bounds
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Distributed Optimization and MPC for
High-Performance Buildings
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00 4000
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CONTROL
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Distributed Optimization and MPC
for Large-Scale Infrastructures

Distributed, local
predictive controllers

S ,;.pc ..+ Decomposition methods

B i‘;r , in optimization and
/ RN I ";,_?lpc J

Information
exchange

dynamic programming

« Application to Distributed
MPC schemes

« Study of performance
versus uncertainty in
DMPC schemes

SobaRairtasncdons « Achievable performance
(dynamics, objective, constraints)
bounds
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O Concluding Remarks
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Preparation for Control Theory Course

= Refresh linear algebra knowledge
See material also on BlackBoard

= Order textbook
Control System Design; An Introduction to State-Space Methods
Author: B. Friedland

= Do not forget to:

® Homework sets 0 and 1 have been posted check it in BlackBoard
® First lecture on September 12 for more information
© Deadline is September 15
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Preparation for Control Theory Course

= Refresh linear algebra knowledge
See material also on BlackBoard

= Order textbook
Control System Design; An Introduction to State-Space Methods
Author: B. Friedland

= Do not forget to:

® Homework sets 0 and 1 have been posted check it in BlackBoard
® First lecture on September 12 for more information
© Deadline is September 15

Thank you! Questions?
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