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Aquifer Thermal Energy Storage (ATES)

• A large-scale natural subsurface storage for thermal energy

• An innovative method for thermal energy balance in smart grids

Cold season:

• The building requests thermal
energy for the heating purpose

• Water is injected into cold well
and is taken from warm well

• The stored water contains cold
thermal energy for next season

[Rostampour et al., JEP, 2016]
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How to Deal with ATES Systems in Smart Thermal Grids?
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Single Building with ATES System
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[Rostampour et al., EGC, 2016], [Rostampour et al., HPC, 2017]
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• A complete model of building thermal
system integrated with ATES system

• Simulation results for more than a month

• Nonconvex problem
formulation

• Computationally
intractable
optimization
problem for long
simulation study

• Infeasible setup for
the network of
ATES systems

[Rostampour et al., EGC, 2016], [Rostampour et al., HPC, 2017]
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Single Building Thermal Energy Demand

Heating Energy Demand

Cooling Energy Demand

Building Demand Energy Generator 
Based on Desired Comfort Service 

and Weather Conditions

Environmental Variables Specific 
Weather 

Realization

Desired 
Building 

Temperatures

Thermal Energy Demand Profile:

• Complete and detailed building dynamical model

• Desired building temperatures (local controller unit)

• In specific weather realization, certain demand profiles are generated

[Rostampour & Keviczky, ECC, 2016]
Vahab Rostampour Distributed Randomized Optimization April 12, 2017 4 / 30



Single Building Thermal Energy Demand

Heating Energy Demand

Cooling Energy Demand

Building Demand Energy Generator 
Based on Desired Comfort Service 

and Weather Conditions

Environmental Variables 

Desired 
Building 

Temperatures

Weather 
Conditions

Uncertain 

Thermal Energy Demand Profile:

• Complete and detailed building dynamical model

• Desired building temperatures (local controller unit)

• In uncertain conditions, uncertain demand profiles are generated

[Rostampour & Keviczky, ECC, 2016]
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Single Building Climate Comfort System

Heating Energy Demand

Cooling Energy Demand

Building Demand Energy Generator 
Based on Desired Comfort Service 

and Weather Conditions

Environmental Variables 

Desired 
Building 

Temperatures

Weather 
Conditions

Uncertain 

Building Control Unit

Optimal Energy Management

Building Control Unit:

• Main components: Boiler, HP, HE, micro-CHP, Storage Tank

• ON/OFF status together with production schedule as decisions

• Control Objective: thermal energy balance for the overall systems

[Rostampour & Keviczky, ECC, 2016]
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Building Climate Comfort with ATES Systems
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· Incorporate ATES System 
· Interaction between components
· Different prediction horizon lengths
· Additional degrees of freedom

Heating Energy Demand

Cooling Energy Demand

Building Demand Energy Generator 
Based on Desired Comfort Service 

and Weather Conditions

Environmental Variables 

Desired 
Building 

Temperatures

Weather 
Conditions

Uncertain 

Building Control Unit
Optimal Energy Management

[Rostampour & Keviczky, IFAC, 2017]
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Smart Thermal Grids with ATES Systems

University

Bank Buildings
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[Rostampour & Keviczky, IFAC, 2017]
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Achievements & Developments

[Rostampour & Keviczky, IFAC, 2017]
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Research Motivation

Challenge: Optimizing the performance of a network ...

1 Computation: Problem size is too large!

2 Communication: Communication bandwidth limitation

3 Information Privacy: Agents may not want to share information

4 Stochastic Nature:
• Agents private uncertainty source (local); uncertain thermal energy

demand of a single building climate comfort
• Agents common uncertainty source (shared); uncertain common

resource pool, e.g., ATES systems
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Why Distributed?

1 Scalable Methodology
• Communication: Only between neighbors
• Computation: Only local; in parallel for all agents

2 Preserving Privacy
• Agents do not reveal information about their preferences (encoded by

objective and constraint functions) to each other

3 Numerous Applications
• Wireless Networks
• Electric Vehicle Charging Control
• Optimal Power Flow with Reserve Scheduling ∗

• Energy Management in STGs with ATES Systems †

∗[Rostampour et. al., 2017]
†[Rostampour & Keviczky, 2017]
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Outline

1 Centralized Framework

2 Distributed Framework

3 Soft Communication Scheme

4 Case Study: STGs with ATES Systems

5 Conclusions and Future work
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Problem Setup

Centralized Deterministic Program

min
x

∑
i

fi(x) −→ fi(·) : objective function of agent i

s.t. x ∈ Xi , for all i −→ Xi : constraint set of agent i

Stochastic Setting:

• ∆ : Possibly unknown distribution and unbounded set

• Semi-infinite optimization problem
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Problem Setup

Centralized Robust Program

min
x

∑
i

fi(x)

s.t. x ∈
⋂
i

Xi(δ) , for all δ ∈ ∆

Stochastic Setting:

• δ : Uncertain parameter δ ∼ P
• ∆ : Possibly unknown distribution and unbounded set

• Semi-infinite optimization program
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Scenario Based Approximation

Centralized Scenario Program

min
x

∑
i

fi(x)

s.t. x ∈
⋂
i

⋂
δ∈∆

Xi(δ)

Replace ∆ with S:

∆ S
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Scenario Based Approximation
Probabilistic Feasibility Certificate

Centralized Scenario Program PS

min
x

∑
i

fi(x)

s.t. x ∈
⋂
i

⋂
δ∈S
Xi(δ)

Centralized Stochastic Program P∆

min
x

∑
i

fi(x)

s.t. P
(
δ ∈ ∆ : x /∈

⋂
i

Xi(δ)
)
≤ ε

• Is x∗S � PS feasible for P∆?

• Is this true for any S?
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i

Xi(δ)
)
≤ ε

Probabilistic Feasibility [Calafiore & Campi, TAC 2006]

Fix β ∈ (0, 1) and S, then

P|S|
(
S ∈ ∆|S| : P

(
δ ∈ ∆ : x∗S /∈

⋂
i

Xi(δ)
)
≤ ε(d, |S|, β)

)
≥ 1− β
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Fix β ∈ (0, 1) and S, then

P|S|
(
S ∈ ∆|S| : P

(
δ ∈ ∆ : x∗S /∈

⋂
i

Xi(δ)
)
≤ ε(d, |S|, β)

)
≥ 1− β

Complexity of ε(d, |S|, β):

• Logarithmic in β: β can be set close to ”zero”

• Linear in |S|−1: the more data the better the result

• Linear in d: number of samples from S which ”support” the solution,
i.e. would leave it unchanged (# decision variables)
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Outline

1 Centralized Framework

2 Distributed Framework

3 Soft Communication Scheme

4 Case Study: STGs with ATES Systems

5 Conclusions and Future work
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Distributed Framework

There are two possible cases:

1 Private (local) uncertainty source: i.e. uncertain thermal energy
demand of a single building climate comfort

xi ∈ Xi(δi) , for all δi ∈ ∆i and for all agents i

2 Common uncertainty source: i.e. uncertain common resource pool
between neighboring agents

x ∈
⋂
k

Xck(δck) , for all δck ∈ ∆ck
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Private Uncertainty Source

Multi Agent Problem

min
x

∑
i

fi(xi)

s.t. x ∈
⋂
δ∈S

∏
i

Xi(δi)

Decomposable Problem

min
x

∑
i

fi(xi)

s.t. x ∈
∏
i

⋂
δi∈Si

Xi(δi)

Requirements

• Decomposable uncertainty source:

δ := {δi}i and S :=
∏
i

Si
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x

∑
i

fi(xi)

s.t. x ∈
∏
i

⋂
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Requirements

• Decomposable uncertainty source:

δ := [δ1, · · · , δi, δj , · · · ] and S :=
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i

Si

Vahab Rostampour Distributed Randomized Optimization April 12, 2017 16 / 30



Private Uncertainty Source

Single Agent Problem

min
xi

fi(xi)

s.t. xi ∈
⋂
δi∈Si

Xi(δi)

Probabilistic Feasibility for Single Agent Problem∗

Fix εi ∈ (0, 1), βi ∈ (0, 1) and Si, then

P|Si|
(
Si ∈ ∆

|Si|
i : P

(
δi ∈ ∆i : x∗Si /∈ Xi(δi)

)
≤ εi

)
≥ 1− βi

∗[Calafiore & Campi, TAC 2006]
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Private Uncertainty Source

Multi Agent Problem

min
x

∑
i

fi(xi)

s.t. x ∈
⋂
δ∈S

∏
i

Xi(δi)

Probabilistic Feasibility for Multi Agent Problem∗

If ε =
∑

i εi ∈ (0, 1), β =
∑

i βi ∈ (0, 1) and given S, then

P|S|
(
S ∈ ∆|S| : P

(
δ ∈ ∆ : x∗S /∈

∏
i

Xi(δi)
)
≤ ε
)
≥ 1− β

∗[Rostampour & Keviczky, 2017]
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Proposed Distributed Implementation
Dynamically Coupled Systems
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Proposed Distributed Implementation
Dynamically Coupled Systems

Centralized Scenario Program

min
{ui}∀i∈N

∑
i∈N

fi(xi,k, ui,k)

s.t. x
(i)
i,k+1 = Aiix

(i)
i,k +Biui,k + Ciδ

(i)
i,k +

∑
j∈Ni

Aijx
(i)
j,k , x

(i)
i,k = xi,0

x
(i)
i,k+` ∈ Xi , ∀` ∈ N+ , ∀δ(i)

i,k ∈ Sδi
ui,k ∈ Ui , ∀k ∈ T , ∀i ∈ N

Vahab Rostampour Distributed Randomized Optimization April 12, 2017 18 / 30



Proposed Distributed Implementation
Dynamically Coupled Systems

Centralized Scenario Program

min
{ui}∀i∈N

∑
i∈N

fi(xi,k, ui,k)

s.t. x
(i)
i,k+1 = Aiix

(i)
i,k +Biui,k + Ciδ

(i)
i,k +

∑
j∈Ni

Aijx
(i)
j,k , x

(i)
i,k = xi,0

x
(i)
i,k+` ∈ Xi , ∀` ∈ N+ , ∀δ(i)

i,k ∈ Sδi
ui,k ∈ Ui , ∀k ∈ T , ∀i ∈ N

Vahab Rostampour Distributed Randomized Optimization April 12, 2017 18 / 30



Proposed Distributed Implementation
Dynamically Coupled Systems

Distributed Scenario Program

min
{ui,k}∀k∈T

fi(xi,k, ui,k)

s.t. x
(i)
i,k+1 = Aiix

(i)
i,k +Biui,k + q

(i)
i,k , x

(i)
i,k = xi,0

x
(i)
i,k+` ∈ Xi , ∀` ∈ N+ , ∀q(i)

i,k ∈ Sqi
ui,k ∈ Ui , ∀k ∈ T

Requirements

Sqi =

q(i)
i,k : q

(i)
i,k = Ciδ

(i)
i,k +

∑
j∈Ni

Aijx
(i)
j,k , ∀δ

(i)
i,k ∈ Sδi , ∀x

(i)
j,k ∈ Sxj
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Proposed Distributed Implementation
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Communication Scheme

We consider two way to communicate between neighboring agents:

• Hard communication scheme: i.e. agent j has to send exactly the set
Sxj with cardinality Nsi as it is requested by agent i

xj

Agent j
xi

Agent i

yj
uj

Scenario
MPC j

x
(i)
j

Sxj yi ui

Scenario
MPC i

I It is an interest of agent j to decide about number of scenarios Ñj J
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Vahab Rostampour Distributed Randomized Optimization April 12, 2017 20 / 30



Soft Communication Scheme

xj

Agent j
xi

Agent i

B̃jyj
uj

Scenario
MPC j

x
(i)
j

Sxj yi ui

Scenario
MPC i

Bj

Definition

A set B̃j ⊆ Rmj is α̃j−reliable if

P
(
xj ∈ Xj : xj /∈ B̃j

)
≤ 1− α̃j ,

and we refer to α̃j as the level of reliability of the set B̃j .
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Soft Communication Scheme

Definition

A set B̃j ⊆ Rmj is α̃j−reliable if

P
(
xj ∈ Xj : xj /∈ B̃j

)
≤ 1− α̃j ,

and we refer to α̃j as the level of reliability of the set B̃j .

Theorem∗: how one can determine α̃j?

Fix β̃j ∈ (0, 1), Ñsi and let

α̃j = Ñsi
−mj

√√√√ β̃j(
Ñsi
mj

) .
We then have P

(
xj ∈ Xj : xj /∈ B̃j

)
≤ 1− α̃j , with prob. 1− β̃j .

∗[Rostampour et. al., 2017]
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Soft Communication Scheme
Probabilistic Feasibility Certificate

The communicated information are reliable with certain level of
probability. How one can accommodate such a probabilistically reliable
information in the probabilistic feasibility certificate of the local agent?

Theorem∗

Given α̃j ∈ (0, 1) and a fixed αi ∈ (0, 1), the state trajectory of a generic
agent i is probabilistically ᾱi–feasible for all δi ∈ ∆i, i.e.,

P (xi,k+` ∈ Xi , ` ∈ N+ ) ≥ ᾱi ,

where ᾱi = 1− 1−αi
α̃i

such that α̃i =
∏
j∈Ni

(α̃j).

∗[Rostampour et. al., 2017]
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Energy Management Problem

Optimization Problem

min thermal energy imbalance error + cost of equipment operation
s.t. 1) equipment limits

2) imbalance error dynamics
3) ATES system dynamics + local thermal energy balance
4) coupling constraint on the thermal radius between agents

Compact Form — x: Decision Variables∗

min
xi

∑
i

fi(xi) −→ fi(·) : objective function of agent i

s.t. xi ∈ Xi(δ`i) , ∀ i −→ Xi : constraint set of agent i

x ∈
⋂
k

Xck(δck) −→ Xck : neighbors coupling constraint set

[Rostampour & Keviczky, IFAC, 2017]
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Energy Management Problem

Optimization Problem

min thermal energy imbalance error + cost of equipment operation
s.t. 1) equipment limits

2) imbalance error dynamics
3) ATES system dynamics + local thermal energy balance
4) coupling constraint on the thermal radius between agents

Compact Form — x: Decision Variables∗

min
xi

∑
i

fi(xi) −→ fi(·) : objective function of agent i

s.t. xi ∈ Xi(δi) , ∀ i −→ Xi : constraint set of agent i

x ∈
⋂
k

Xck(δck) −→ Xck : coupling constraint set

∗set-points for control units of buildings and pump flow rate for ATES systems
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STGs with ATES Systems
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STGs with ATES Systems
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STGs with ATES Systems
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STGs with ATES Systems
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Concluding Remarks

• Distributed randomized optimization to deal with private (local)
uncertainty source over a network of dynamically coupled systems

• Soft communication scheme with an extension of probabilistic
feasibility guarantee

• Application to energy management of smart thermal grids (STGs)
with aquifer thermal energy storage (ATES) system
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Future Work

What comes next?

• Distributed randomized optimization for weakly coupled problems
together with common uncertainty source

• Preserving privacy of individual agents in a network

• Distributed randomized optimization for hierarchical decision making
in uncertain dynamical environment

• More applications — distributed (multi-area) reserve scheduling and
optimal power flow over AC power networks
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