Distributed Randomized Optimization for
Large Scale Interconnected Systems

Vahab Rostampour

Delft University of Technology
Deft Center of Systems and Control

April 12, 2017

3 Ta1r)
TUDelft NWO

Vahab Rostampour Distributed Randomized Optimization April 12, 2017 1/30



Aquifer Thermal Energy Storage (ATES)

e A large-scale natural subsurface storage for thermal energy

e An innovative method for thermal energy balance in smart grids

Cold season:
e The building requests thermal
energy for the heating purpose
e Water is injected into cold well
and is taken from warm well

e The stored water contains cold
thermal energy for next season

[Rostampour et al., JEP, 2016]
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How to Deal with ATES Systems in Smart Thermal Grids?
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Single Building with ATES System
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Aquifer Thermal Energy Storage (ATES) System

Warm Well Cold Well

[Rostampour et al., EGC, 2016], [Rostampour et al., HPC, 2017]
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Single Building with ATES System
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Aquifer Thermal Energy Storage (ATES) System
e Infeasible setup for

the network of
e A complete model of building thermal ATES systems

system integrated with ATES system

Warm Well Cold Well

e Simulation results for more than a month

[Rostampour et al., EGC, 2016], [Rostampour et al., HPC, 2017]
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Single Building Thermal Energy Demand

Desired
Building
Temperatures
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Building Demand Energy Generator
Based on Desired Comfort Service
and Weather Conditions

Thermal Energy Demand Profile:
e Complete and detailed building dynamical model

e Desired building temperatures (local controller unit)

e In specific weather realization, certain demand profiles are generated

[Rostampour & Keviczky, ECC, 2016]
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Single Building Thermal Energy Demand

Desired
Building
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Heating Energy Demand

|

Environmental Variables U ncertai n
Weather
Conditions

&)

A4
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Building Demand Energy Generator
Based on Desired Comfort Service
and Weather Conditions

Thermal Energy Demand Profile:

e Complete and detailed building dynamical model
e Desired building temperatures (local controller unit)

e In uncertain conditions, uncertain demand profiles are generated

[Rostampour & Keviczky, ECC, 2016]
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Single Building Climate Comfort System

Desired
Building
Temperatures
Optimal Energy Management
O Heating Energy Demand :
1 \ ) Environmental Variables :
LIRS ‘ Uncertain

Weather

A Cooling Energy Demand N Conditions

Building Demand Energy Generator
Based on Desired Comfort Service
and Weather Conditions

Building Control Unit

Building Control Unit:

e Main components: Boiler, HP, HE, micro-CHP, Storage Tank
e ON/OFF status together with production schedule as decisions
o Control Objective: thermal energy balance for the overall systems

[Rostampour & Keviczky, ECC, 2016]
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Building Climate Comfort with ATES Systems
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e Incorporate ATES System

¢ Interaction between components

¢ Different prediction horizon lengths
o Additional degrees of freedom

[Rostampour & Keviczky, IFAC, 2017]
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Smart Thermal Grids with ATES Systems
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[Rostampour & Keviczky, IFAC, 2017]
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Smart Thermal Grids with ATES Systems
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[Rostampour & Keviczky, IFAC, 2017]
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Smart Thermal Grids with ATES Systems
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Smart Thermal Grids with ATES Systems

2

[Rostampour & Keviczky, IFAC, 2017]
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Achievements & Developments

[Rostampour & Keviczky, IFAC, 2017]
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Research Motivation

Challenge: Optimizing the performance of a network ...
@® Computation: Problem size is too large!
® Communication: Communication bandwidth limitation
© Information Privacy: Agents may not want to share information

® Stochastic Nature:

o Agents private uncertainty source (local); uncertain thermal energy
demand of a single building climate comfort

e Agents common uncertainty source (shared); uncertain common
resource pool, e.g., ATES systems
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Why Distributed?

@ Scalable Methodology

e Communication: Only between neighbors
e Computation: Only local; in parallel for all agents
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objective and constraint functions) to each other
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Why Distributed?

@ Scalable Methodology

e Communication: Only between neighbors
e Computation: Only local; in parallel for all agents

@® Preserving Privacy

e Agents do not reveal information about their preferences (encoded by

objective and constraint functions) to each other
©® Numerous Applications
Wireless Networks
Electric Vehicle Charging Control
Optimal Power Flow with Reserve Scheduling *
Energy Management in STGs with ATES Systems |

*[Rostampour et. al., 2017]
f[Rostampour & Keviczky, 2017]
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Outline

® Centralized Framework

® Distributed Framework

© Soft Communication Scheme

O Case Study: STGs with ATES Systems

©® Conclusions and Future work
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Problem Setup
Centralized Deterministic Program

H{Tin Zfz(m) —  fi(-) : objective function of agent 7

st. z€X;, foralli — AX; : constraint set of agent ¢
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Problem Setup

Centralized Deterministic Program
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i
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Problem Setup

Centralized Deterministic Program

mxin Zfz(x) —  fi(-) : objective function of agent ¢

st. x¢€ mXi , — A, : constraint set of agent 7
i

e How one can deal with uncertain &;(0)?
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Problem Setup

Centralized Robust Program

mxin Z fi(z)

st. z e mXi(J) , foralld € A
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Problem Setup

Centralized Robust Program

min ) fi(x)
st. z e ﬂ/\,’i(d) , foralld € A

Stochastic Setting:

e ) : Uncertain parameter § ~ P

e A : Possibly unknown distribution and unbounded set
e Semi-infinite optimization problem
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Problem Setup
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st. x e m m XZ((S)

i beA
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Scenario Based Approximation

Centralized Scenario Program

min Zfi(ﬂf)
st. ze()[) X0

i 0EA
Replace A with S:
A S/ —_m e
/ o o ° N
! ° e o \
° 1
LT E = I‘ T
o o
\ /
° o /
\ ’
N\ e
SN -~
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Scenario Based Approximation
Probabilistic Feasibility Certificate

Centralized Scenario Program Ps Centralized Stochastic Program Pa

min Zﬁ-(m) min Zﬁ-(w)
st. ze()() X0 s.t. 1@(5 cA:zd ﬂXi(6)> < e

i 0eS

e Is 2% F Ps feasible for Pp?

e Is this true for any S7?
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Scenario Based Approximation
Probabilistic Feasibility Certificate

Centralized Scenario Program Ps Centralized Stochastic Program Pa

min > fi() min > fi(x)
st. ze[)() X0 st. P(0e A ag(X(0)) <e
i 0eS %

Probabilistic Feasibility [Calafiore & Campi, TAC 2006]
Fix 5 € (0,1) and S, then

pls| (5 c AlS . IP’(6 EA : k¢ ﬂxi(a)) < e(d, |sy,5)> >1-8
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Scenario Based Approximation

Probabilistic Feasibility Certificate

Probabilistic Feasibility
Fix 5 € (0,1) and S, then

pis| (3 c AlSl . IP’(5 €A : % ¢ ﬂ)@(é)) < e(d, |5|,5)> >1-5

Complexity of e(d, |S|, B):
e Logarithmic in 3: [ can be set close to "zero"
e Linear in |S|™!: the more data the better the result

e Linear in d: number of samples from & which "support” the solution,
i.e. would leave it unchanged (# decision variables)
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Distributed Framework

There are two possible cases:

@ Private (local) uncertainty source: i.e. uncertain thermal energy
demand of a single building climate comfort

x; € X;(0;) , for all §; € A; and for all agents i

® Common uncertainty source: i.e. uncertain common resource pool
between neighboring agents

v € () Xep(0c,) , forall 6., € A,
k
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Private Uncertainty Source

Multi Agent Problem

min Zfz’(ﬂfi)
st. x €& ﬂ H/Yz(&)

0ES 1
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Private Uncertainty Source

Multi Agent Problem Decomposable Problem

min Zfz(ﬂfz) min Zfz(%)
st. ze[)][[xa0) st. ze[] ) )

0ES 1 i 0,ES;
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Private Uncertainty Source

Multi Agent Problem Decomposable Problem

min Zfz(ﬂfz) min Zfz(%)
st. ze[)][[xa0) st. ze[] ) )

0ES 1 i 0;,€S;

Requirements

e Decomposable uncertainty source:

§:=[01,--+,0i,05,---] and  S:=]][8
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Private Uncertainty Source

Single Agent Problem

min - f;(z;)

s.t. x; € ﬂ Xl(él)
51‘651‘

Probabilistic Feasibility for Single Agent Problem*
Fix e, € (0,1), 8; € (0,1) and S;, then

pIS:| (sl- e Al IP’(&Z- €A ¢ ah ¢ Xi(dq;)) < si) >1- 4

*[Calafiore & Campi, TAC 2006]
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Private Uncertainty Source

Multi Agent Problem

Zfi(l'i)
s.t. €& ﬂ HXZ((S)

0eS 1

Probabilistic Feasibility for Multi Agent Problem*
lfe=>.e€(0,1), B=>,6i€(0,1) and given S, then

pis| (SGAS : ((56A : acsgéHX )9) >1-8

*[Rostampour & Keviczky, 2017]
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Proposed Distributed Implementation
Dynamically Coupled Systems

Tir Agent 2 ~—___
Z; / X9 ° N

1 Vs °

Agent 1 ‘M/ Uz g s u
| % .
T L Y2 Y-, T;
~ N * P
Ty Ul - Y

Centralized <~ - -
yi”/' Scenario MPC ~ = Agent i

X

J o\
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Proposed Distributed Implementation
Dynamically Coupled Systems

Centralized Scenario Program

Pl ieZNfi(xi,kzaui,k)
s.t. xfz,lﬂ = Amw% + Biui + CZ&I(Zk) + Z Angzl)c ’ xgzi)f = Ti0
JEN;
.Z‘Ef,)ﬁ% eX;, VleN;, V(Sg,i/z € S5,
uig €U, VkeT VieN
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Proposed Distributed Implementation
Dynamically Coupled Systems

Distributed Scenario Program

min Tl W )
{us k}veeT
s.t. IBE?CH = Aux% + Biug . + q§’,2 ) 9«“% = T 0

:cl(.f,)CHeXi, Ve e N, , vql?f,z,esi
uig €U, VEET

Requirements

Sl G =G RS Aijxﬁf}g , ¥8\) € S5, , Vx
JEN;

()

ik € Sz

Vahab Rostampour Distributed Randomized Optimization April 12, 2017 18 / 30



Proposed Distributed Implementation
Dynamically Coupled Systems

Scenario
MPC 2
us Tyz Scenario
S, Sz y... MPC ...
e Agent 2 — A
/ X2 ° ./
. / o U...
Scenario<== Agent 1« Sa.
MPC 1 - o

Se;

ST:\I
Agenti - Yi Scenario
S. ) i
Y 1 x; - MPC i
Scenario<-- Agent M
MPC M vy \ / Sa;
Se .
o u z Agent j
/ Zj
Yool Ju.. Sa; y,': u;
Scenario =y
MPC ... Scenario
MPC j
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Proposed Distributed Implementation
Dynamically Coupled Systems

Scenario
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Communication Scheme

We consider two way to communicate between neighboring agents:

e Hard communication scheme: i.e. agent j has to send exactly the set
Sz; with cardinality Ny, as it is requested by agent i

Agent j _, :-"}t?:}, Agent i

T; I§2> .‘«::' . Z;

1 U ’ I .
viy 1" Sa; yiy
Scenari.o Scenario
MPC j MPC i
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Communication Scheme

We consider two way to communicate between neighboring agents:

e Soft communication scheme: i.e. agent j sends a parametrized set Bj

with its desired level of reliability &; to agent ¢

Agent j St
Zj 1‘(2) .ﬁl.‘,?'\.:
J .
1 .
Yj + U ;5
Scenario
MPC j

Agent i
T
1
Yiy
Scenario
MPC i

Uy

» It is an interest of agent j to decide about number of scenarios N; <
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Communication Scheme

We consider two way to communicate between neighboring agents:

e Soft communication scheme: i.e. agent j sends a parametrized set Bj
with its desired level of reliability &; to agent ¢

Agent j Agent i
Zj .Z‘;Z) Zi
1 . ’ A I .
vy 1 B; yiy 1
Scenario Scenario
MPC j MPC i

» It is an interest of agent j to decide about number of scenarios N; <
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Soft Communication Scheme

. T gl | .
Agentj ____, % i,.' _.. _,“5'“”_, . Agenti
Ty T .2> o ..'kc le "'é | Xg
T AU J S > A
yj+ J T Bj Bj yi+ T
Scenario Scenario
MPC j MPC i
Definition
A set B; C R is a;—reliable if
P(ijXj:a}j¢Bj>§l—dj,
and we refer to &; as the level of reliability of the set Bj.
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Soft Communication Scheme

Definition

A set B; C R is G ;—reliable if
]P’(CCJ'GX]‘ 3 mj¢B~j> Sl*dj 5

and we refer to ¢&; as the level of reliability of the set lg’j.

Theorem*: how one can determine &;?

Fix 3; € (0,1), Ny, and let

We then have P (wj eX; rx; ¢ 5’]) <1-—a¢; , with prob. 1 — Bj.

*[Rostampour et. al., 2017]
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Soft Communication Scheme
Probabilistic Feasibility Certificate

The communicated information are reliable with certain level of
probability. How one can accommodate such a probabilistically reliable
information in the probabilistic feasibility certificate of the local agent?

Theorem*™

Given &; € (0,1) and a fixed «; € (0,1), the state trajectory of a generic
agent i is probabilistically a;—feasible for all d; € A;, i.e.,

P(zjpie € X, LENY) > ay,

where a; = 1 — 1=% such that a; = [ien; ().

a;

*[Rostampour et. al., 2017]
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Energy Management Problem

Optimization Problem

min thermal energy imbalance error + cost of equipment operation
s.t. 1) equipment limits

2) imbalance error dynamics

3) ATES system dynamics + local thermal energy balance

4) coupling constraint on the thermal radius between agents

[Rostampour & Keviczky, IFAC, 2017]
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Energy Management Problem

Optimization Problem

min thermal energy imbalance error + cost of equipment operation
s.t. 1) equipment limits

2) imbalance error dynamics

3) ATES system dynamics + local thermal energy balance

4) coupling constraint on the thermal radius between agents

Compact Form — z: Decision Variables*
min Zfz(m) —  fi(*) : objective function of agent i
Ty N
(2

st. x; € Xi(0;), Vi — X, : constraint set of agent i

x € ﬂ)(ck(&%) — X, : coupling constraint set
k

*set-points for control units of buildings and pump flow rate for ATES systems
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STGs with ATES Systems

e Three buildings in
Utrecht city with
real parameters

e Real weather
condition data from
2010 to 2012
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STGs with ATES Systems
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STGs with ATES Systems
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STGs with ATES Systems
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Concluding Remarks

e Distributed randomized optimization to deal with private (local)
uncertainty source over a network of dynamically coupled systems

e Soft communication scheme with an extension of probabilistic
feasibility guarantee

o Application to energy management of smart thermal grids (STGs)
with aquifer thermal energy storage (ATES) system
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Future Work

What comes next?
e Distributed randomized optimization for weakly coupled problems
together with common uncertainty source
e Preserving privacy of individual agents in a network

e Distributed randomized optimization for hierarchical decision making
in uncertain dynamical environment

e More applications — distributed (multi-area) reserve scheduling and
optimal power flow over AC power networks

Vahab Rostampour Distributed Randomized Optimization April 12, 2017 28 / 30



Acknowledgments

Thank you for your attention!
Questions?

Contact at:
http://www.dcsc.tudelft.nl/~vrostampour/
v.rostampour@tudelft.nl

Vahab Rostampour Distributed Randomized Optimization April 12, 2017 29 / 30



Distributed Randomized Optimization for
Large Scale Interconnected Systems

Vahab Rostampour

Delft University of Technology
Deft Center of Systems and Control

April 12, 2017

3 Ta1r)
TUDelft NWO

Vahab Rostampour Distributed Randomized Optimization April 12, 2017 30/ 30



	Centralized Framework
	Distributed Framework
	Soft Communication Scheme
	Case Study: STGs with ATES Systems
	Conclusions and Future work

