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Aquifer Thermal Energy Storage (ATES)

= A large-scale natural subsurface storage for thermal energy

= An innovative method for thermal energy balance in smart grids

Cold season:

= The building requests thermal
energy for the heating purpose

= Water is injected into cold well
and is taken from warm well

= The stored water contains cold
thermal energy for next season
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How to Develop a Predictive System Dynamics Model?
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Single Agent System
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Building Thermal Comfort Relations
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Building Thermal Comfort Model Formulation

We define the following model:
Building Dynamical Model

XB,k+1 = XB,k + fB3(XB,k> UB ks VB,k» VBext,k)T
y8.k = 88(xB,k» UB k)

= Building inside variables (states): xgx € R3

= Building outside variables (uncertain):  Vgext.k € R3
= Pump flow rate variable (control):  up

= Supplied water temperature:  vp

* Returned water temperature:  yg

= Sampling period: T
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Single Agent System

Heat Exchanger
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Heat Exchanger Model

A countercurrent heat exchanger is used and it presents via a static model.

Static Model Variables:

= Input water temperatures: Ti,??k biulding plate T;Efi’k
Vhek € R? —> ——-

= Pump flow rates - <
(control variables): ua , us k Toi':,k sater pate Tir?ﬁ(

= Output water temperatures:
Yhek € R? Heat Exchanger

Heat Exchanger Static Model

Yhe,k = H(Vhe ks Ua K, Us k)
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Single Agent System

Heat Pump
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Heat Pump Model

An electrical water to water heat pump is used with static model.

Static Model Variables: Teova con
in,k out,k
= Input water temperatures: g
Uhpk € R? 5 5
. © 2
Pump flow rates 5 | — 4|3
(control variables): up k, us k S S
= Qutput water temperatures: —————— o
Yhpk € R? Toi\fk Heat Pump Tﬁ?

Heat Pump Static Model

Yhp,k = P(Uhp,ks UB ks Us k)
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Single Agent System

Storage
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Storage Tank Model

We define an storage tank model with the following first order difference

equations:
Vs,k+1 = Vs,k + Vin,k - Vout,k
T Vs.k T4 Vin,k
sktl = s+ ———Tink
Vs,k + Vin,k Vs,k + Vin,k

Storage Dynamical Model
Xs k+1 = fs(Xs,k, Us k, Vs k)

Ys.k = 85(xs,k)

= Tank temperature and volume variables (state): x5 € R2

= Pump flow rate variable (control):  us

Input water temperature:  vs

Output water temperature:  ys g
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Single Agent System

Boiler
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Boiler and Chiller Model

We define the boiler and chiller water temperatures with the following
relations:

boi o chi — EO
Tout kK — =90°C Tout k — C
Boiler: Tbo'k = Thypass,k Chiller: TCh'k = Tbypass,k
Up k = Vp kUB k Uc k = Ve kUS k

= Boiler valve position (control): vpx € [0, 1]
= Chiller valve position (control): vcx € [0,1]
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Single Agent System

Storage

Aquifer Thermal Energy Storage (ATES) System
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Aquifer Thermal Energy Storage System Principle

Similar modeling as the storage model by introducing different modes:

= Woater is taken from one

of the wells and is injected To%
into the counterpart well. ;
v
Taken water has. constant CPya o qad | ag
temperature until the wk w,k out,k
aquifer water temperature o
. uAk Tan?bk
dominates. ’ |
. . a a a
= Injected water has gained — Vc,l((] ] Tc,l? - ""Touqt,k
thermal energy and it is 1

stored for the next
upcoming season.

—
fir—
—a

S
=
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Aquifer Thermal Energy Storage System Model

We define the following Model:

ATES system Dynamical Model

XA k+1 = Fa(XA k> UA ks VA Ky Sw ks Sc,k)

YAk = 8A(XA k> Sw ks Sc,k)

Wells temperature and volume variables (state):  xax € R?
= Pump flow rate variable (control):  wua
= Output water temperature:  ya «

= Input water temperature:  va
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Interconnections Between Each Subsystem
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Interconnections Between Each Subsystem

i X oo B . TB
© Building model: vg, := Tsupvk, YBk = Tret’k

B boi b
Taupk = Vi (Sw,k Tout k + Se,k (1= Vo) Tout & + o,k Tone ) + (1= Vai) Tone &
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Single Agent Representation

Consider compact formulation of dynamical agent system:
Single Agent Model

Xk+1 = F(Xky Uky Vicy Skcy W)

= State variables: xx := [xB k, Xs k> XA k] € R?

= Pump flow rate variables: uy := [ug k, Us k, ua k] € R3

= Valve position variables: vy := [vp k, Ve k, vaik] € [0, 1)3

= Operating mode variables: sy := [Sw.k, Sc,k, Snk] € {0, 1}3
= Uncertain variables: wi := [Tok;loks Vox] C A € R3

= State variables are available at each sampling time k.
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Control Problem Formulation

We formulate an optimization problem as follows:

min Objective Function: Reference Tracking
{ukavk}kN=1
subject to: Nonlinear System Dynamics

State and Control Bounds

Valves, Modes and Uncertainty Sets
Heat Exchanger Capacity Constraints
Heat Pump Capacity Constraints
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Proposed Formulation
Stochastic Mixed-Integer Nonlinear Optimization Problem
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Simulation Study

A single agent model control problem formulation:

Sampling period: 1h
Prediction horizon: 24h
No integer variables (fixed)
No stochastic terms (deterministic controller)
Linear approximation of HP & HE complex subsystems
Remove complex constraints of HP & HE:
P < ok S I Y < ek < Y

min max min max
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Simulation Results
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Simulation Results
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Concluding Remarks

ATES System Dynamics Model
Building Climate Comfort System Dynamics Model

Integrated ATES System into Building Climate Comfort System

= Important Features:

= Complete mathematical models of building thermal equipment
= Developed model is highly complex and nonlinear; it can be considered
as a thermal energy demand of a building
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Achievements & Developments

= Complete Predictive Model of the ATES System
[Rostampour et al., EGU, 2017]

= ATES in Smart Thermal Grids 4+ Preventing Mutual Interactions
[Rostampour et al., IFAC, 2017]

= Distributed Stochastic MPC for ATES in Smart Thermal Grids
[Rostampour et al., Submitted, 2017]
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