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Abstract

This addendum contains some extra information in connection with the worked examples of Sec-

tion 6 of the paper “MPC for continuous piecewise-affine systems” (by B. De Schutter and T.J.J.

van den Boom, Systems & Control Letters, vol. 52, no. 3–4, pp. 179–192, July 2004). In particular,

we give the explicit form of the optimization problems for each of the four solution approaches

used in Section 6.

All references in this addendum that are not preceded by a capital letter A refer to sections, equations,

etc. of the paper [A2].

Example 6.1 (continued) For each of the solution approaches considered in Section 6 we get the

following explicit form for the optimization problems:

1. the new LP based approach of Section 5.2:

In this case we have to solve the six LPs that correspond to (21) subject to1

−0.2 6 u(k)−u(k−1)6 0.2 (A.1)

−0.2 6 u(k+1)−u(k)6 0.2 (A.2)

u(k)> 0 (A.3)

u(k+1)> 0 ; (A.4)

2. a nonlinear nonconvex SQP approach:

Here we have to solve

min
u(k),u(k+1)

max
(

|y(k)− r(k)|, |y(k+1)− r(k+1)|
)

+λ
(

u(k)+u(k+1)
)

subject to

y(k) = min
(

0.5 x(k−1)+4 u(k)−1, 0.2 u(k)+1
)

y(k+1) = min
(

0.25 x(k−1)+2 u(k)+4 u(k+1)−1.5,

0.1 u(k)+4 u(k+1)−0.5, 0.2 u(k+1)+1
)

and (A.1)–(A.4);

1I.e., (18) for k and k+1.
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3. the mixed integer linear programming (MILP) approach of [4]:

This results in2

min
u(k),u(k+1),δ (k),δk+1,

z1(k+1),z2(k),z2(k+1),t(k)

t(k)+λu(k)+λu(k+1)

subject to

t(k)> x(k)− r(k)

t(k)> r(k)− x(k)

t(k)> x(k+1)− r(k+1)

t(k)> r(k+1)− x(k+1)

x(k) = 0.5 x(k−1)δ (k)+3.8 z2(k)−2 δ (k)+0.2 u(k)+1

x(k+1) = 0.5 z1(k+1)+3.8 z2(k+1)−2 δ (k+1)+0.2 u(k+1)+1

ε − (M f + ε)δ (k)6 0.5 x(k−1)+3.8 u(k)−2 6 M f (1−δ (k))

−Muδ (k)6 z2(k)6 Muδ (k)

u(k)−Mu(1−δ (k))6 z2(k)6 u(k)+Mu(1−δ (k))

ε − (M f + ε)δ (k+1)6 0.5 x(k)+3.8 u(k+1)−2 6 M f (1−δ (k+1))

−Mxδ (k+1)6 z1(k+1)6 Mxδ (k+1)

x(k)−Mx(1−δ (k+1))6 z1(k+1)6 x(k)+Mx(1−δ (k+1))

−Muδ (k+1)6 z2(k+1)6 Muδ (k+1)

u(k+1)−Mu(1−δ (k+1))6 z2(k+1)6 u(k+1)+Mu(1−δ (k+1))

δ (k),δ (k+1) ∈ {0,1}

and (A.1)–(A.4),

with ε a small positive number, and with Mx an upper bound3 for |x(k)| for all k, and Mu an

upper bound for |u(k)| for all k, and M f = 0.5 Mx +3.8 Mu +2;

4. the ELCP approach (cf. [12]):

Here we have to solve the following optimization problem4:

min
ν

max
(

|y(k,ν)− r(k)|, |y(k+1,ν)− r(k+1)|
)

+λ
(

u(k,ν)+u(k+1,ν)
)

where ν contains the parameters of the parameterized solution set of the ELCP given below (this

solution set can be computed with the ELCP algorithm of [A1]), and where y(k,ν), y(k+1,ν),

2See [4] for the way to transform a PWA model into a mixed logical dynamical model (MLD) (i.e., a system with both

boolean and real state variables, with linear state and output equations, and with additional linear inequality constraints on

the state variables). The piecewise linear objective function J(k) =max
(

|y(k)−r(k)|, |y(k+1)−r(k+1)|
)

+λ
(

u(k)+u(k+
1)
)

has been transformed into a linear objective function by introducing an extra variable t(k) = max
(

|y(k)− r(k)|, |y(k)−
r(k+1)|

)

. The 5 other extra variables (δ (k), δ (k+1), z1(k+1) = x(k)δ (k+1), z2(k) = u(k)δ (k), z2(k+1) = u(k+1)δ (k+
1)) originate from the transformation from PWA into MLD equations. Note that since the value of x(k− 1) is known at

sample step k the term 0.5x(k− 1)δ (k) is in fact a linear term. As a consequence, the equation for x(k) is linear in x(k),
δ (k), z2(k) and u(k).

3The upper bounds Mx and Mu could be determined based on physical insight or on operational constraints.
4This problem can be solved using an SQP approach.
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u(k,ν), u(k + 1,ν) are respectively the y(k), y(k + 1), u(k), u(k + 1) that correspond to the

parameter vector ν . The ELCP is given by5

0.5 x(k−1)+4 u(k)−1− y(k)> 0

0.2 u(k)+1− y(k)> 0
(

0.5 x(k−1)+4 u(k)−1− y(k)
)

·
(

0.2 u(k)+1− y(k)
)

= 0

0.25 x(k−1)+2 u(k)+4 u(k+1)−1.5− y(k+1)> 0

0.1 u(k)+4 u(k+1)−0.5− y(k+1)> 0

0.2 u(k+1)+1− y(k+1)> 0
(

0.25 x(k−1)+2 u(k)+4 u(k+1)−1.5− y(k+1)
)

·
(

0.1 u(k)+4 u(k+1)−0.5− y(k+1)
)

·
(

0.2 u(k+1)+1− y(k+1)
)

= 0

and (A.1)–(A.4).

Remark A.1 For the system (16)–(17) we can also allow output constraints of the form6

y(k)> r(k) for all k . (A.5)

Indeed, for k and k+1 this constraint leads to

y(k) = min
(

0.5 x(k−1)+4 u(k)−1, 0.2 u(k)+1
)

> r(k)

y(k+1) = min
(

0.25 x(k−1)+2 u(k)+4 u(k+1)−1.5,

0.1 u(k)+4 u(k+1)−0.5, 0.2 u(k+1)+1
)

> r(k+1)

or equivalently

0.5 x(k−1)+4 u(k)−1 > r(k) (A.6)

0.2 u(k)+1 > r(k) (A.7)

0.25 x(k−1)+2 u(k)+4 u(k+1)−1.5 > r(k+1) (A.8)

0.1 u(k)+4 u(k+1)−0.5 > r(k+1) (A.9)

0.2 u(k+1)+1 > r(k+1) . (A.10)

Since these constraints are affine in ũ(k) =
[

u(k) u(k + 1)
]T

, the new optimization approach of

Section 5.2 can still be applied7. This also holds for constraints of the form

x(k)> xlow(k) and y(k)> ylow(k) for all k

5See [12] for more information on how this ELCP should be constructed.
6Since the output saturates at 0.2u(k)+ 1, we will have to adapt the reference signal r if the constraint (A.5) is added,

since otherwise the MPC problem will be infeasible for some values of k (cf. conditions (A.7) and (A.10)).
7If the constraint (A.5) is added, the terms r(k)−y(k) and r(k+1)−y(k+1) in expression (19) for the objective function

become redundant. As a consequence, the terms m1, . . . , m5 will disappear from (21), but the constraints (A.6)–(A.10) will

be added. Hence, we still have 6 LPs with 13 inequalities and 2 variables.
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for lower bound signals xlow and ylow, or for any nonnegative linear combination of these constraints8.

This shows that our approach can also deal with constraints on the output or the state provided that

after substitution they result in constraints that are convex in the input ũ(k).

Example 6.2 (continued) Recall that we have selected the following MPC objective function J(k):

J(k) = Jout,∞(k)+λJin,1(k) .

Using the system equations (24)–(25) and the constraints (26)–(28) we obtain

J(k) = max
(

|y(k)− r(k)|, |y(k+1)− r(k+1)|
)

+λ
(

|u(k)|+ |u(k+1)|
)

= max
(

y(k)− r(k), y(k+1)− r(k+1)
)

+ (by (28))

λ
(

max(u(k),−u(k))+max(u(k+1),−u(k+1))
)

= max
(

y(k)− r(k), y(k+1)− r(k+1)
)

+

+λ max
(

u(k)+u(k+1), u(k)−u(k+1),−u(k)+u(k+1),−u(k)−u(k+1)
)

= max
(

y(k)− r(k), y(k+1)− r(k+1)
)

+

+λ max
(

u(k)−u(k+1),−u(k)+u(k+1),−u(k)−u(k+1)
)

(by (27))

= max
(

y(k)− r(k)+λu(k)−λu(k+1), y(k)− r(k)−λu(k)+λu(k+1),

y(k)− r(k)−λu(k)−λu(k+1), y(k+1)− r(k+1)+λu(k)−λu(k+1),

y(k+1)− r(k+1)−λu(k)+λu(k+1),

y(k+1)− r(k+1)−λu(k)−λu(k+1)
)

.

By using successive substitution and by applying the properties given in Section 3 of the main paper,

y(k) and y(k+1) can be expressed as functions of the current state x(k−1) and the future inputs u(k)
and u(k+1):

y(k) = x(k) = min
(

x(k−1)+u(k), 1
)

y(k+1) = x(k+1) = min
(

x(k)+u(k+1), 1
)

= min
(

min
(

x(k−1)+u(k), 1
)

+u(k+1), 1
)

= min
(

min
(

x(k−1)+u(k)+u(k+1), 1+u(k+1)
)

, 1
)

= min
(

x(k−1)+u(k)+u(k+1), u(k+1)+1, 1
)

.

Hence,

J(k) = max
(

min
(

x(k−1)+u(k), 1
)

− r(k)+λu(k)−λu(k+1),

min
(

x(k−1)+u(k), 1
)

− r(k)−λu(k)+λu(k+1),

min
(

x(k−1)+u(k), 1
)

− r(k)−λu(k)−λu(k+1),

min
(

x(k−1)+u(k)+u(k+1), u(k+1)+1, 1
)

− r(k+1)+λu(k)−λu(k+1),

min
(

x(k−1)+u(k)+u(k+1), u(k+1)+1, 1
)

− r(k+1)−λu(k)+λu(k+1),

min
(

x(k−1)+u(k)+u(k+1), u(k+1)+1, 1
)

− r(k+1)−λu(k)−λu(k+1)
)

8However, constraints of the form x(k) 6 xupp(k) or y(k) 6 yupp(k) for upper bound signals xupp and yupp lead to con-

straints that are not convex in ũ(k). Hence, if such constraints are present, the new optimization approach of Section 5.2

cannot be applied.
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= max
(

min
(

x(k−1)+u(k)− r(k)+λu(k)−λu(k+1),

1− r(k)+λu(k)−λu(k+1)
)

,

min
(

x(k−1)+u(k)− r(k)−λu(k)+λu(k+1),

1− r(k)−λu(k)+λu(k+1)
)

,

min
(

x(k−1)+u(k)− r(k)−λu(k)−λu(k+1),

1− r(k)−λu(k)−λu(k+1)
)

,

min
(

x(k−1)+u(k)+u(k+1)− r(k+1)+λu(k)−λu(k+1),

u(k+1)+1− r(k+1)+λu(k)−λu(k+1),

1− r(k+1)+λu(k)−λu(k+1)
)

,

min
(

x(k−1)+u(k)+u(k+1)− r(k+1)−λu(k)+λu(k+1),

u(k+1)+1− r(k+1)−λu(k)+λu(k+1),

1− r(k+1)−λu(k)+λu(k+1)
)

,

min
(

x(k−1)+u(k)+u(k+1)− r(k+1)−λu(k)−λu(k+1),

u(k+1)+1− r(k+1)−λu(k)−λu(k+1),

1− r(k+1)−λu(k)−λu(k+1)
))

= max
(

min
(

x(k−1)+(λ +1)u(k)−λu(k+1)− r(k),

λu(k)−λu(k+1)− r(k)+1
)

,

min
(

x(k−1)+(−λ +1)u(k)+λu(k+1)− r(k),

−λu(k)+λu(k+1)− r(k)+1
)

,

min
(

x(k−1)+(−λ +1)u(k)−λu(k+1)− r(k),

−λu(k)−λu(k+1)− r(k)+1
)

,

min
(

x(k−1)+(λ +1)u(k)+(−λ +1)u(k+1)− r(k+1),

λu(k)+(−λ +1)u(k+1)− r(k+1)+1,

λu(k)−λu(k+1)− r(k+1)+1
)

,

min
(

x(k−1)+(−λ +1)u(k)+(λ +1)u(k+1)− r(k+1),

−λu(k)+(λ +1)u(k+1)− r(k+1)+1,

−λu(k)+λu(k+1)− r(k+1)+1
)

,

min
(

x(k−1)+(−λ +1)u(k)+(−λ +1)u(k+1)− r(k+1),

−λu(k)+(−λ +1)u(k+1)− r(k+1)+1,

−λu(k)−λu(k+1)− r(k+1)+1
))

. (A.11)

Note that this is an MMPS expression in max-min canonical form, which can be written compactly as

(29).

Recall that we have considered the computation of the closed-loop MPC input signal over a sim-

ulation period [1,15] with λ = 0.1, x(0) = 1, u(0) =−0.1, and for the reference signal

{r(k)}15
k=1 = 1, 1, 0.7, 0.5, −0.45, −0.9, −1.2, −1.5, −1.4, −2.4,

−2.5, −2.6, −2.6, −2.75, −2.75 .
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Figure A.1: The closed-loop MPC output signal y, the reference signal r, the difference signal y− r,

the input signal u, and the region R(i) in which the system is at sample step k for Example 6.2.

This results in the following closed-loop MPC input sequence:

{umpc(k)}
15
k=1 = 0, 0, −0.3, −0.2, −0.5, −0.75, −0.45, −0.25, 0.05, −0.25,

−0.55, −0.35, −0.05, −0.15, 0 .

In Figure A.1 we have plotted the closed-loop MPC input signal u, the output signal y, the reference

signal r, and the difference signal y− r.

Remark A.2 Note that the constraint (28) leads to

y(k) = min
(

x(k−1)+u(k), 1
)

> r(k)

y(k+1) = min
(

x(k−1)+u(k)+u(k+1), u(k+1)+1, 1
)

> r(k+1)

or equivalently

x(k−1)+u(k)> r(k) (A.12)

1 > r(k) (A.13)

x(k−1)+u(k)+u(k+1)> r(k+1) (A.14)
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u(k+1)+1 > r(k+1) (A.15)

1 > r(k+1) . (A.16)

We have solved the MPC optimization problems using 4 different approaches:

1. the new LP based approach of Section 5.2:

In this case we have to solve the four LPs that correspond to (31) subject to9

−0.3 6 u(k)−u(k−1)6 0.3 (A.17)

−0.3 6 u(k+1)−u(k)6 0.3 (A.18)

u(k)+u(k−1)6 0 (A.19)

u(k+1)+u(k)6 0 (A.20)

x(k−1)+u(k)> r(k) (A.21)

x(k−1)+u(k)+u(k+1)> r(k+1) (A.22)

u(k+1)+1 > r(k+1) ; (A.23)

2. a nonlinear nonconvex SQP approach:

Here we have to solve

min
u(k),u(k+1)

max
(

y(k)− r(k),y(k+1)− r(k+1)
)

+λ
(

|u(k)|+ |u(k+1)|
)

subject to

y(k) = min
(

x(k−1)+u(k), 1
)

y(k+1) = min
(

x(k−1)+u(k)+u(k+1), u(k+1)+1, 1
)

y(k)> r(k)

y(k+1)> r(k+1)

and (A.17)–(A.20);

3. the mixed integer linear programming approach of [4]:

This results in10

min
u(k),u(k+1),δ (k),δk+1,

z1(k+1),z2(k),z2(k+1),t1(k),t2(k),t3(k)

t1(k)+λ t2(k)+λ t3(k)

subject to

t1(k)> x(k)− r(k)

t1(k)> x(k+1)− r(k+1)

t2(k)> u(k)

9See (26), (27), and (A.12), (A.14)–(A.15).
10See [4] for the way to transform a PWA model into an MLD model. The piecewise linear objective function J(k) =

max
(

y(k)− r(k),y(k + 1)− r(k + 1)
)

+ λ
(

|u(k)|+ |u(k + 1)|
)

has been transformed into a linear objective function by

introducing 3 extra variables t1(k) = max
(

y(k)− r(k),y(k)− r(k + 1)
)

, t2(k) = |u(k)| = max
(

u(k),−u(k)
)

, and t3(k) =
|u(k + 1)| = max

(

u(k + 1),−u(k + 1)
)

; the six other extra variables (δ (k), δ (k + 1), z1(k), z1(k + 1), z2(k), z2(k + 1))
originate from the transformation from PWA into MLD equations.
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t2(k)>−u(k)

t3(k)> u(k+1)

t3(k)>−u(k+1)

x(k) = x(k−1)δ (k)+ z2(k)−δ (k)+1

x(k+1) = z1(k+1)+ z2(k+1)−δ (k+1)+1

ε − (Mx +Mu +1+ ε)δ (k)6 x(k−1)+u(k)−1 6 (Mx +Mu +1)(1−δ (k))

−Muδ (k)6 z2(k)6 Muδ (k)

u(k)−Mu(1−δ (k))6 z2(k)6 u(k)+Mu(1−δ (k))

ε − (Mx +Mu +1+ ε)δ (k+1)6 x(k)+u(k+1)−1

6 (Mx +Mu +1)(1−δ (k+1))

−Mxδ (k+1)6 z1(k+1)6 Mxδ (k+1)

x(k)−Mx(1−δ (k+1))6 z1(k+1)6 x(k)+Mx(1−δ (k+1))

−Muδ (k+1)6 z2(k+1)6 Muδ (k+1)

u(k+1)−Mu(1−δ (k+1))6 z2(k+1)6 u(k+1)+Mu(1−δ (k+1))

x(k)> r(k)

x(k+1)> r(k+1)

δ (k),δ (k+1) ∈ {0,1}

and (A.17)–(A.20),

with ε a small positive number, and with Mx an upper bound for |x(k)| for all k, and Mu an upper

bound for |u(k)| for all k;

4. the ELCP approach (cf. [12]):

Here we have the following optimization problem:

min
ν

max
(

y(k,ν)− r(k),y(k+1,ν)− r(k+1)
)

+λ
(

|u(k,ν)|+ |u(k+1,ν)|
)

where ν contains the parameters of the parameterized solution set of the ELCP given below as

it can be computed with the ELCP algorithm of [A1] and y(k,ν), y(k+1,ν), u(k,ν), u(k+1,ν)
respectively the y(k), y(k+ 1), u(k), u(k+ 1) that correspond to the parameter vector ν . The

ELCP is given by

x(k−1)+u(k)− y(k)> 0

1− y(k)> 0
(

x(k−1)+u(k)− y(k)
)

·
(

1− y(k)
)

= 0

x(k−1)+u(k)+u(k+1)− y(k+1)> 0

u(k+1)+1− y(k+1)> 0

1− y(k+1)> 0
(

x(k−1)+u(k)+u(k+1)− y(k+1)
)

·
(

u(k+1)+1− y(k+1)
)

·
(

1− y(k+1)
)

= 0

viii



y(k)> r(k)

y(k+1)> r(k+1)

and (A.17)–(A.20).
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