Reference:
L. Buşoniu, R. Babuška, and B. De Schutter, "Multi-agent reinforcement learning: A survey," Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision (ICARCV 2006), Singapore, pp. 527-532, Dec. 2006.Abstract:
Multi-agent systems are rapidly finding applications in a variety of domains, including robotics, distributed control, telecommunications, economics. Many tasks arising in these domains require that the agents learn behaviors online. A significant part of the research on multi-agent learning concerns reinforcement learning techniques. However, due to different viewpoints on central issues, such as the formal statement of the learning goal, a large number of different methods and approaches have been introduced. In this paper we aim to present an integrated survey of the field. First, the issue of the multi-agent learning goal is discussed, after which a representative selection of algorithms is reviewed. Finally, open issues are identified and future research directions are outlined.Downloads:
Bibtex entry: