Optimal trajectory planning for trains using mixed integer linear programming


Reference:
Y. Wang, B. De Schutter, B. Ning, N. Groot, and T.J.J. van den Boom, "Optimal trajectory planning for trains using mixed integer linear programming," Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC 2011), Washington, DC, pp. 1598-1603, Oct. 2011.

Abstract:
The optimal trajectory planning for trains under constraints and fixed maximal arrival time is considered. The variable line resistance (including variable grade profile, tunnels, and curves) and arbitrary speed restrictions are included in this approach. The objective function is a trade-off between the energy consumption and the riding comfort. First, the nonlinear train model is approximated by a piece-wise affine model. Next, the optimal control problem is formulated as a mixed integer linear programming (MILP) problem, which can be solved efficiently by existing solvers. The good performance of this approach is demonstrated via a case study.


Downloads:
 * Corresponding technical report: pdf file (123 KB)
      Note: More information on the pdf file format mentioned above can be found here.


Bibtex entry:

@inproceedings{WanDeS:11-032,
        author={Y. Wang and B. {D}e Schutter and B. Ning and N. Groot and T.J.J. van den Boom},
        title={Optimal trajectory planning for trains using mixed integer linear programming},
        booktitle={Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC 2011)},
        address={Washington, DC},
        pages={1598--1603},
        month=oct,
        year={2011}
        }



Go to the publications overview page.


This page is maintained by Bart De Schutter. Last update: March 21, 2022.