Optimal trajectory planning for trains under operational constraints using mixed integer linear programming


Reference:
Y. Wang, B. De Schutter, T.J.J. van den Boom, and B. Ning, "Optimal trajectory planning for trains under operational constraints using mixed integer linear programming," Proceedings of the 13th IFAC Symposium on Control in Transportation Systems (CTS'2012), Sofia, Bulgaria, pp. 13-18, Sept. 2012.

Abstract:
The optimal trajectory planning problem for trains under operational constraints is considered, which is essential for the success of the real-time operation and the rescheduling process for railway networks. The operational constraints caused by the timetable, real-time operation, or rescheduling often include target points and target window constraints. The approach proposed in this paper can take such constraints into account. In addition, the varying maximum traction force is approximated using a piecewise affine function and included in the trajectory planning problem. The optimal control problem is recast as a mixed integer linear programming problem, which can be solved efficiently by existing solvers. A case study is used to demonstrate the performance of the proposed approach.


Downloads:
 * Online version of the paper
 * Corresponding technical report: pdf file (143 KB)
      Note: More information on the pdf file format mentioned above can be found here.


Bibtex entry:

@inproceedings{WanDeS:12-035,
        author={Y. Wang and B. {D}e Schutter and T.J.J. van den Boom and B. Ning},
        title={Optimal trajectory planning for trains under operational constraints using mixed integer linear programming},
        booktitle={Proceedings of the 13th IFAC Symposium on Control in Transportation Systems (CTS'2012)},
        address={Sofia, Bulgaria},
        pages={13--18},
        month=sep,
        year={2012},
        doi={10.3182/20120912-3-BG-2031.00003}
        }



Go to the publications overview page.


This page is maintained by Bart De Schutter. Last update: March 21, 2022.