Reference:
A. Jamshidnejad,
H. Hellendoorn,
S. Lin, and
B. De Schutter,
"Smoothening for efficient solution of model predictive control for
urban traffic networks considering endpoint penalties,"
Proceedings of the 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, Las Palmas de Gran Canaria,
Spain, pp. 2837-2842, Sept. 2015.
Abstract:
Traffic congestion together with emissions has become a big problem in
urban areas. Traffic-responsive control systems aim to make the best
use of the existing road capacity. Here, we propose a model predictive
controller for urban traffic networks, where the goal of the control
is to find a balanced trade-off between reduction of congestion and
emissions. The cost function is defined as a weighted combination of
the total time spent, TTS, (as a criterion for evaluating the
congestion level), the total emissions, TE, and the expected values of
the TTS and TE caused by the vehicles that remain in the network at
the end of the prediction horizon until they leave the network. We
propose a method for estimation of the expected time spent and
emissions by the remaining vehicles, where our method is based on a K
Shortest path algorithm. For the prediction model of the MPC-based
controller, we use a macroscopic integrated flow-emission model that
includes the macroscopic flow S-model and the microscopic emission
model, VT-micro. Since the S-model includes non-smooth functions, it
does not allow us to benefit from efficient gradient-based methods to
solve the optimization problem of the MPC-based controller. Therefore,
in this paper we also propose smoothing methods for the S-model.