SPARSITY
project funded by Volvo AB and NWO (mixed private-public)
Title: SPARSITY: using data from sparse measurements for predictive maintenance
Period: 2021 - 24
Budget: 603 kEur
Role: PI
Funding source: Volvo AB anbd NWO (TKI-HTSM grant 21.0056)
Partners: Volvo AB (Sweden), TU Delft (NL)


Description: Vehicles, manufacturing and printing equipment, consumer and medical devices, robots, wind turbines: they are examples of systems that could benefit from Predictive Analytics (PA). For instance, PA can leverage data science to improve service life through predictive maintenance and to build better ones via predictive design. An outstanding challenge for PA is the need of large amounts of data to develop, identify and validate algorithms. One way to overcome data scarcity is via synthetic data generation from so called Digital Twins (DT), that is dynamical mathematical models that are used in lieu of the physical system, even before it is built. Anyway, DT models development still need data. We plan to solve this conundrum by extending modelling and identification methodologies in order to cope with a particular kind of data scarcity: data sparsity. We will target cases were data is not continuously available over time, and fragmented over a large population of similar devices. This is relevant for mass-produced systems where practical reasons prevent data to be collected, transmitted and processed continuously for the entire population. This novel approach will be validated in an industrial Proof of Concept for the diagnosis and prognosis of real automotive components.
For more information check the project press release.
Publications
- APENERGYMulti timescale battery modeling: Integrating physics insights to data-driven modelApplied Energy 2025
- CDC25Direct Continuous-Time LPV System Identification of Li-Ion Batteries Via L1-Regularized Least SquaresIn IEEE 64th Conference on Decision and Control (CDC) 2025
- ECC25Continuous-Time System Identification and OCV Reconstruction of Li-Ion Batteries Via Regularized Least SquaresIn European Control Conference 2025
- ECC2024Concurrent Li-ion Battery Parameter Estimation and Open-Circuit Voltage Reconstruction via L1-Regularized Least SquaresIn European Control Conference 2024
- VPPC2023Separating multiscale Battery dynamics and predicting multi-step ahead voltage simultaneously through a data-driven approachIn 2023 IEEE Vehicle Power and Propulsion Conference (VPPC) 2023
- IFAC23Real-time Battery State of Charge and parameters estimation through Multi-Rate Moving Horizon EstimatorIn IFAC World Congress 2023